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ABSTRACT 
 

Orchestrating the Dynamic Adaptation of Distributed Software 
with Process Technology 

 
Giuseppe Valetto 

 
Software systems are becoming increasingly complex to develop, understand, 

analyze, validate, deploy, configure, manage and maintain. Much of that complexity 

is related to ensuring adequate quality levels to services provided by software systems 

after they are deployed in the field, in particular when those systems are built from 

and operated as a mix of proprietary and non-proprietary components. That 

translates to increasing costs and difficulties when trying to operate large-scale 

distributed software ensembles in a way that continuously guarantees satisfactory 

levels of service. 

A solution can be to exert some form of dynamic adaptation upon running software 

systems: dynamic adaptation can be defined as a set of automated and coordinated 

actions that aim at modifying the structure, behavior and performance of a target 

software system, at run time and without service interruption, typically in response to 

the occurrence of some condition(s). To achieve dynamic adaptation upon a given 

target software system, a set of capabilities, including monitoring, diagnostics, 

decision, actuation and coordination, must be put in place. 

This research addresses the automation of decision and coordination in the context of 

an end-to-end and externalized approach to dynamic adaptation, which allows to 

address as its targets legacy and component-based systems, as well as new systems 

developed from scratch. In this approach, adaptation provisions are superimposed by 



 

a separate software platform, which operates from the outside of and orthogonally to 

the target application as a whole; furthermore, a single adaptation possibly spans 

concerted interventions on a multiplicity of target components. To properly 

orchestrate those interventions, decentralized process technology is employed for 

describing, activating and coordinating the work of a cohort of software actuators, 

towards the intended end-to-end dynamic adaptation. 

The approach outlined above, has been implemented in a prototype, code-named 

Workflakes, within the Kinesthetics eXtreme project investigating externalized 

dynamic adaptation, carried out by the Programming Systems Laboratory of 

Columbia University, and has been employed in a set of diverse case studies. This 

dissertation discusses and evaluates the concept of process-based orchestration of 

dynamic adaptation and the Workflakes prototype on the basis of the results of those 

case studies. 
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1 Introduction 

Software systems and services pervade our lives at an unprecedented scale, in great 

part thanks to the popularization of the Internet and the distribution and 

componentization of a variety of software on top of such a global networking 

environment. Software applications are becoming increasingly interconnected and 

interoperable, and provide us with a multitude of value-added services, which can be 

increasingly devised and offered by composing pre-existing software in new ways. 

That trend is likely to continue and become even more explosive in the next few 

years, with the emergence of ubiquitous, interconnected communication and 

computing facilities, pervading our living environments and embedded in a variety of 

devices, as well as of newer distributed computing models that push or transcend the 

traditional client/server paradigm (such as multi-tiered architectures, Web Services, 

peer-to-peer computing, and Grid computing). 

One downside of that scenario is that software systems that provide the value-added 

services we are becoming accustomed to are rapidly becoming extremely complex to 

develop, understand, analyze, validate, deploy, configure, manage and maintain. The 

reasons are twofold. Firstly, each service is likely to rely on a number of integrated 

software components, as well as resources (computational power, networking and 

data), which may be heterogeneous, loosely coupled, and dispersed to various extents. 

Notice how this integration complexity is not only horizontal, i.e., at the application 

level, but also vertical, since – in accord with the middleware approach – the final 

application sits on top of multiple layers of infrastructure software, each of which is 

designed to abstract the layer below and hide its idiosyncrasies. Moreover, analyzing 
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and understanding all the inter-component dependencies of complex, heterogeneous 

distributed software systems and their impact on quality is increasingly difficult, and 

can become outright impossible if componentization is pushed to its limits. For 

example, in a componentized scenario of global scale, multiple services could 

dynamically find, bind to, and invoke remotely deployed components and resources 

that match their computing needs; thus, they might introduce extremely variable 

usage and interaction patterns for said components and resources, whose 

consequences would become hardly predictable and even difficult to replicate within 

a testing lab. 

It is also noticeable that this multifold growth in software complexity occurs at both 

the development and the execution phase of the software life cycle. Complexities that 

surface at development time can be at times mitigated by taking advantage of certain 

insights and best practices in software development, such as component-based 

software engineering, which aims at promoting re-use, interoperability and 

standardization, or formal specification and design methods, which can help with 

describing and reasoning about the various facets of especially complex systems. 

Complexities that are related to the post-development phases of the software life 

cycle regard managing and ensuring proper quality of service to software systems 

once they operate in field conditions. Those complexities are particularly intensified 

in a scenario where services are built from a mix of proprietary and third-party 

components, so that the control of and the knowledge about the overall system and its 

runtime environment does not belong to a single stakeholder. 
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It is well-known that it is quite hard to carry out systematized testing during the 

development phase, in order to properly profile and validate the usage of single 

components once they are deployed and function on-line in a widely distributed 

execution environment; it is even harder to come up with tests for the many possible 

interaction patterns of integratable component sets, which may include some third-

party, legacy or COTS elements. That difficulty limits the level of assurance that can 

be achieved, in particular with respect to the non-functional characteristics of the 

computing entities under test. As a consequence, critical conditions, errors and 

failures become manifest only in the field, rather than in the lab, and corrective 

maintenance has become an intensive, continuous activity that spans the whole 

product lifetime and accounts these days for the majority of software costs. The 

abovementioned current trends in large-scale distributed computing are likely to 

aggravate this situation. 

Furthermore, traditional software management practices occurring in the post-

deployment phase are quite labor-intensive and in the current state of the art still rely 

heavily on human analysis and intervention. As such, they are (and will increasingly 

become) slow and error-prone, as they struggle to cope with the rate of growth in 

systems’ complexity. As a consequence, the reaction to and resolution of faults, mis-

configurations, overload, or other common run-time software mishaps typically 

comports some period of service interruption, or at least significant degradation of the 

service quality. That translates into further increasing costs and difficulties when 

trying to operate large-scale distributed software infrastructures and applications that 
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must continuously abide with certain levels of service, according to their functional 

and extra-functional requirements. 

The need to respond to the complexity challenge outlined above is gaining 

considerable attention as one of the major problems to be faced in Information 

Technology today and in the next future, with respect to the engineering of complex 

software systems. A number of research initiatives that advocate and investigate new 

methods and tools to cope with it have recently been launched under a variety of 

denominations, such as on-line validation [56], recovery-oriented computing [121], 

steering systems [55], dynamic systems [202], autonomic computing [32], etc. 

Those initiatives vary in scope and differ in the conceptual and technical approaches 

they advocate. For instance, on-line validation suggests a vision in which systems are 

continuously supervised and kept functional and in good shape by some external 

means. Recovery-oriented computing emphasizes preventing system faults, or 

overcoming them by keeping or returning systems to their full functionality as before 

the occurrence of the fault. Steering systems investigate how to develop software 

whose operation dynamics and parameters can change as a function of its execution. 

Dynamic systems and autonomic computing are principally concerned with making 

the software infrastructure and the crucial Information Technology assets of an 

organization intrinsically and automatically manageable, taking in account not only 

the technical but possibly also the business-related aspects that impact systems 

management. 

Notwithstanding the differences, the common concept at the basis of all those 

initiatives is to automatically and transparently handle complexity as soon as it 
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displays its adverse effects on a system in operation, or even preemptively; the goal is 

to keep systems running and providing service within their intended functional and 

extra-functional boundaries at all times and in all conditions – possibly save for the 

most critical, extreme or unexpected faults. The means is the introduction of 

computing provisions for the dynamic adaptation of single components as well as the 

overall service. With the term dynamic adaptation, we intend some automated and 

coordinated set of actions (expressed as computations) aimed at modifying the 

structure, behavior and/or performance of a target software system, at run time, with 

no service interruption, and minimal service perturbation. Dynamic adaptation 

typically intervenes in response to the occurrence of some condition (or a complex 

mix thereof), and has the purpose to ensure the continuous provision of service with 

acceptable levels of quality. Examples of adaptations may range from tuning 

functioning parameters within a single component in order to influence its isolated 

performance, to concerted (re-)configurations of multiple components and 

connectors, to component instantiation or migration, to architecture-wide 

interventions, such as on-the-fly (re-)instantiation of the service as a whole. 

Dynamic adaptation can be seen both as an on-line extension of software maintenance 

practices, and as an automation of existing post-deployment management practices. It 

can address a set of issues that is potentially quite vast: (re-)deployment, leading to 

automated system and service staging and evolution; dynamic (re-)configuration at 

different levels of granularity, leading to Quality of Service (QoS) optimizations of 

various kinds and self-management, such as availability, scalability, performance; 
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fault recovery and prevention, leading to self-healing; the activation of security 

countermeasures, leading to protection from attacks; etc.  

The autonomic computing initiative categorizes the various features it seeks to 

develop and promote in autonomic systems as self-configuration, self-healing, self-

optimization and self-protection [32]. The “self-“ prefix indicates the focus of 

autonomic computing – which is shared by many other similar initiatives - on 

building new kinds of systems with intrinsic adaptation provisions that are embedded 

into their implementation. Such an internalized approach, however, may suffer from 

two major drawbacks: firstly, it promotes an “egotistic” stance, in which each element 

in a composite system decides upon and effects dynamic adaptation on its own, 

overlooking any end-to-end perspective that embraces the overall system; moreover, 

it may prove unrealistic in an IT world in which systems in operation are a mix of 

new and old software, with new software a possibly minor portion of the whole, and 

with old software often impervious (unless running prohibitive costs) to the kind of 

re-hauling needed to make it intrinsically adaptive. 

An alternative approach can be called externalized dynamic adaptation, which 

operates from the outside of and orthogonally to target applications, without making 

any assumptions about the targets’ implementation, internal communication and 

computation mechanisms, source code availability, etc. As such, externalized 

dynamic adaptation is applicable also to legacy systems. Notice that “legacy” is taken 

here in a rather broad sense, to encompass not only pre-existing and “ancient” 

software, but also any third-party components, subsystems and entire, self-standing 

systems. The targets of the approach can be hence generally characterized as systems 
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of legacy systems, that is, heterogeneous, possibly very large and loosely-coupled 

ensembles of components of different origin and varying granularity that work 

together towards providing a given service, which must be made autonomic as a 

whole. In the remainder, a system of that kind is often referred to as the target system 

of a dynamic adaptation facility. 

In order to effectively carry out externalized dynamic adaptation on that kind of target 

systems, a set of capabilities, or roles, must be present. Among them: monitoring, i.e., 

the ability to provide snapshots of the state of the system and its constituents 

(architectural components and connectors, or even finer-grained modules), which 

must be sufficiently detailed to capture and expose enough information about any 

run-time criticalities to be addressed by the adaptation facilities; diagnostics, i.e., the 

ability to analyze said snapshots and find out whether critical conditions have 

occurred (or are about to occur) and to point out their cause; decision, i.e., the ability 

to figure out what among multiple possible adaptation strategies is the most suitable 

for the diagnosed situation; actuation, i.e., the ability to summon and effect on 

demand some (re-)configurations or other controlled modifications onto the running 

system implementation; and coordination, i.e., the ability to carry out actuations that 

impact multiple components in a concerted fashion, as required by the chosen 

dynamic adaptation strategy. 
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Figure 1: Roles in Dynamic Adaptation of Software. 

Figure 1 shows abstractly how those capabilities defining the dynamic adaptation 

roles can be integrated into an end-to-end closed control loop that enables the 

superimposition of dynamic adaptation onto the target system from the outside. That 

control loop may provide a form of feedback (detect-and-respond, i.e., the capability 

to take some action, as a reaction to the occurrence and detection of a target system 

condition) and also feed-forward (detect-and-anticipate, i.e., the capability of take 

some preventive action, on the basis of the occurrence and detection of events that are 

anticipatory of a target system condition, and before it actually occurs). Such an end-

to-end, externalized control loop can address equally well, as its targets, new systems 

developed from scratch, legacy systems and systems built by composition, whether or 

not they natively take in account dynamic adaptation concerns and features. 

The research work presented here proposes an approach for dealing with the 

aforementioned coordination role – and in part with the decision role as well - in the 

framework of externalized dynamic adaptation. It does not directly address - but 
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rather assumes - the existence of the monitoring and diagnostic capabilities of 

dynamic adaptation. Those other two roles are seen as input sources providing data 

and triggers to a decision and coordination facility which selects proper adaptation 

policies and oversees their execution. Actuation capabilities are also outside the main 

conceptual focus of this work, although of course there is a necessarily tight 

integration between coordination and actuation capabilities at the implementation 

level, given that actuators are the natural subjects of coordination in the afore 

mentioned adaptation policies. 

The motivation for the focus on coordination comes from the observation that many 

existing approaches to dynamic adaptation are local, i.e., they provide adaptive 

provisions for a single computing entity in isolation (e.g., a Web server), or at most 

for tightly coupled subsystems that are designed and bound to work together (e.g., a 

cluster of Web servers). Local adaptations intend to achieve and maintain the 

functionality and performance of those entities continuously optimal (or at least 

adequate) under variable conditions. Those local optima are irrespective of any larger 

application context, according to which an adaptive computing entity may become a 

component in a more complex, often distributed, system. To exert dynamic adaptation 

internally to a single component, monitoring, diagnostics, decision and actuation 

capabilities are therefore sufficient, and coordination can be forsaken. Coordination 

becomes instead critical when the target of dynamic adaptation is a multi-component 

application, which may or may not include some intrinsically adaptive elements (e.g., 

a classic three-tiered system made of a front-end clustering facility, multiple Web and 

application servers participating in the cluster as the mid-tier, and a back-end data 
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storage). The goal in that case is to maintain the target application as a whole within 

adequate quality parameters Such an end-to-end adaptation can emerge from finer-

grained adaptations such as those carried out on single components, only if they are 

opportunely orchestrated towards that global goal. Notice how also the connotation of 

the decision capability changes, since it must also become global, to take in account 

the “bigger picture” of the overall target application, and may thus need a whole new 

degree of sophistication and knowledge: per-component decisions leading to local 

optima may not be adequate anymore, or may even be counter-productive in the light 

of an end-to-end dynamic adaptation scenario. 

To investigate those themes, this research proposes using distributed process 

technology as a software coordination paradigm that allows to automate the 

orchestration of a cohort of software actuators (also known as effectors), which must 

work together to establish or maintain the intended configuration, functionality and 

behavior of the system that is subject to the dynamic adaptation. 

Process (often referred to also as “workflow”)1 technology provides suitably 

sophisticated coordination facilities, since it provides the high-level, abstract and 

explicit concept of a multi-step process, with each step representing a task, activity, or 

unit of work, and with steps connected by control and data flows. Processes can 

appropriately capture complex, end-to-end adaptation strategies, composed of a 

number of inter-related actuations that bring some intended side effects on various 

parts of the target system, and that need to respect complex logic and sequencing 

dependencies: a process lays out an explicit, global picture of the entire adaptation 

strategy in terms of more refined activities and fine-grained interventions. Process 
                                                 
1 In the remainder, the terms process and workflow will be used in an interchangeable manner. 
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description formalisms are flexible with respect to the type of coordination model 

enforced, and often offer powerful constructs to handle dynamic dependencies, 

contingency planning and compensating actions. Furthermore, the state of the art in 

process technology offers enactment engines that can integrate a variety of actors, 

support heterogeneous environments and technologies, and address large-scale 

distribution issues. Therefore, via the enactment of an appropriately codified process, 

a process engine can orchestrate the execution of actuations by a variety of diverse 

effectors on dispersed components. 

In this work, we present and discuss thoroughly the model, architecture, and 

implementation of such a process engine – named Workflakes [7] [8]. Workflakes has 

been developed in the context of a dynamic adaptation platform named Kinesthetics 

eXtreme (KX) [5] [6], developed by the Programming Systems Laboratory of 

Columbia University. The KX architecture embodies the externalized control loop 

shown in Figure 1, and includes – besides Workflakes – complementary facilities for 

monitoring, diagnostics and actuation [122]. KX remains orthogonal and disjoint 

from the target systems it is superimposed onto; hence, it promotes the separation of 

dynamic adaptation from other concerns intrinsic to the target application, can be 

applied to legacy systems, and can still cooperate with and take advantage of any 

built-in autonomic features in an end-to-end perspective. 

Workflakes is located at the core of KX, that is, at the juncture between the 

monitoring / diagnostics “front end”, and the actuation “back end” of the control loop 

provided by the KX platform. Workflakes is implemented as a decentralized process 

enactment engine based on the open-source Cougaar project [25]. Workflakes 

 



12 

includes a general-purpose application programmatic interface (API) to guide 

computational units that implement KX effectors, via a number of abstract control 

and reporting primitives. Furthermore, it fulfills the decision role of dynamic 

adaptation either internally or by calling external decision-making facilities that 

capture and evaluate domain-dependent knowledge to elaborate decisions. 

In the context of KX, Workflakes has been experimented with and validated in a 

number of case studies. Those experiments pertain to a variety of application 

domains, from large-scale information systems, to e-commerce, to personal 

communication services, to group multimedia provisioning, etc. They tackle different 

aspects of the dynamic adaptation problem space, from improving QoS, to handling 

management complexities, to enhancing performance, enforce correct behavior, etc. 

Those case studies are presented in detail in this document; their evaluation provides 

qualitative and quantitative information about the benefits that externalized dynamic 

adaptation in general, and more specifically the process-based coordination of 

adaptation, can have on their targets. Those benefits are described in terms of various 

quality factors that pertain to the goals of each case study and to the operation of the 

target application and the service it provides, such as reduced efforts and costs, 

increased efficiency for activities like deployment, management and maintenance, 

improved service reliability and availability at run time, enforcement of correct 

system behavior, improved performance and so on. The achieved benefits are also 

evaluated with respect to the amount of additional development effort, system 

complexity, and performance overhead introduced by superimposing externalized 

dynamic adaptation upon the original system. 
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The experimental work on Workflakes intends to demonstrate two major hypotheses 

that have originally motivated this research [9]: in the first place, that it is feasible and 

effective to employ an external infrastructure to retrofit pre-existing software systems 

and components thereof with dynamic adaptation features; furthermore, that state-of-

the-art decentralized process / workflow technology can fulfill the requirements of the 

coordination role of such an externalized infrastructure, and can exert highly complex 

forms of orchestration and control on distributed software ensembles, as required for 

dynamic adaptation. This latter result can be generalized to other application domains 

that have in common with the realm of dynamic adaptation similarly demanding 

coordination requirements; for example, how to dynamically determine, initiate and 

guide some form of “impromptu” cooperation within a group of existing, distributed 

software entities, in order to satisfy the provision of some service on demand (see for 

example [123], [124], [125]).  

This document addresses the various issues outlined in this Introduction. First of all it 

provides an exhaustive presentation of the approach: it starts with an overview of the 

most important conceptual aspects of dynamic adaptation; it continues with the 

description of a generic externalized architecture for dynamic adaptation [57], as it 

has emerged from the joint design work carried out by participants in the DARPA 

DASADA program [56], under which much of this research was developed, and with 

a discussion of process / workflow formalisms and technology in the context of the 

major recognized paradigms employed for software coordination; it then analyzes the 

requirements of coordination related to the domain of dynamic adaptation and how 

process technology can fulfill them. 
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The document continues with the presentation of the choices taken in this research, 

and the model that derives from them, discussing its rationale, advantages and 

limitations. The description of the design and implementation of the Workflakes 

process enactment engine for the orchestration of dynamic software adaptation, in 

compliance with that model, follows. 

Coming to the evaluation of the work, the document firstly describes a selected set of 

case studies in dynamic adaptation involving Workflakes and KX, and then uses their 

results to assess the major strengths and weaknesses of the approach. Finally, it 

outlines the contribution of this work in comparison to the state of the art, and 

forecasts possible paths for future research. 
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2 Characterization of the Approach 

The purpose of this Section is to introduce the major concepts that underlie this 

research. It begins by providing an overview of dynamic adaptation. Then it describes 

a reference architecture for a platform that aims at superimposing dynamic adaptation 

from the outside of a target system. To provide motivation for the usage of processes 

for the orchestration of dynamic adaptation, it discusses a variety of results in 

software coordination, and the fit of process technology as a software coordination 

paradigm. Finally, it outlines the major requirements for a coordination facility for 

dynamic adaptation and matches them with the characteristics of process technology 

and of other candidate paradigms, in particular rule-based and agent-based systems. 

2.1 A Conceptual Overview of Dynamic Adaptation 

Dynamic adaptation can be exerted in a number of ways, which can considerably vary 

in granularity and scope; moreover, a number of options exist on how their 

implementation can interrelate with the implementation of the system to be adapted. 

With respect to granularity, each single software component may be developed to be 

adaptive in itself, i.e., for self-diagnosis, self-configuration, self-tuning, self-repair, 

and so on. An example regards a simple client/server architecture: the request 

handling component in a server (such as a Web or application server) can be designed 

to efficiently handle peaks in incoming requests from clients, by activating particular 

threading and scheduling policies that replace those employed in normal conditions, 

as a consequence of the detection and for the duration of a peak. 
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Adaptive features at the granularity of the single component are likely to do a good 

job if employed in isolation, i.e., to achieve and maintain a “local optimum” with 

respect to the quality of service provided by that component under a variety of 

circumstances. For complex systems built from multiple inter-connected components, 

however, it is not always the case that a combination of local optimizations provides 

the best adaptation solution across the board. Extending on the example above, if two 

separate server components, which happen to live on the same host, both react to a 

request peak for the overall service by increasing their parallelism and spawning 

additional threads for servicing their respective request queues faster, they might in 

fact end up in a resource contention situation with respect to the host CPU, thus 

possibly contributing to deteriorate the quality of service, rather than enhance it. That 

can happen even if those co-located components belong to different applications, 

which may be a common case for example in server farms or data centers devoted to 

the provision of multiple services (in fact, many autonomic computing efforts – in 

particular industrial ones - are directed towards the automated managements of those 

data centers, as well as the various applications that are hosted there). 

In response to certain conditions, internal adaptive mechanisms are therefore not 

sufficient and can be, on the contrary, counter-productive; it may be necessary to 

come up with a global adaptation strategy – at the granularity of the target system as a 

whole - in which finer-grained, local adaptations assume merely a tactical role and are 

orchestrated and balanced with respect to one another in accord with an overall 

strategy. In the example above, an alternative form of dynamic entailing more global 

re-configurations and optimizations would be deploying other server components and 
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clustering them together with the one that has trouble servicing incoming requests fast 

enough. 

Notice that there is an interesting parallel here: dynamic adaptation at the target 

system level builds upon adaptive features made available at the component level, 

very much like the target system itself is built on top of the various functional 

features of components; furthermore, like an application logic is necessary to provide 

the glue that holds the system together and makes it work in the intended way, some 

overarching logic is similarly necessary, to express and guide the dynamic adaptation 

of the whole system as a combination of adaptations impacting subsets of components 

and their connectors in an orderly way. 

Another interesting aspect is whether dynamic adaptation features should be 

embedded within or superimposed upon the target software, i.e., internalized vs. 

externalized dynamic adaptation. The former approach assumes significant planning-

ahead and effort on the part of the design and development team and is thus 

particularly effective for new developments, while the latter intends to remain 

orthogonal to the development of the target system, as well as to its main 

computation, control and communication facilities, and can be in principle 

superimposed a posteriori on non-adaptive as well as partially adaptive target 

systems. 

Internalizing adaptive features at the component granularity level can be achieved in a 

variety of ways, which range from hardwiring fault-tolerance features within the code 

of a recognizably critical component (perhaps a posteriori, as a result of corrective or 

perfective maintenance), to more systematic approaches, which can be characterized 
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as “design for adaptation”. That practice attempts to analyze and address at an early 

stage the criticalities within a component, and to equip it by design with flexible 

mechanisms that allow to effect suitable adaptation policies, possibly from a portfolio 

of options. For instance, aspect-oriented development methodologies [126] can be 

employed to that end: adaptive features would be then regarded from the start as 

software aspects, that is, concerns that need to remain separated and orthogonal in the 

development of a given component. They could then be designed and implemented in 

a modular fashion, with respect to other functional or extra-functional concerns 

relevant to the same component. That approach is advocated for example by [190]. A 

number of other approaches are being actively investigated, and design techniques 

and architectures that explicitly support adaptive concerns gets increasing levels of 

attention (as demonstrated, for example, by the success of a recent forum like the 

ICSE Workshop on Software Architectures for Dependable Systems [191] [192]). 

Internalizing dynamic adaptation features at coarser granularity levels than a single 

component, that is, encompassing functional sub-systems or even the target system as 

a whole, is a more complicated endeavor, and the attention and effort devoted to it at 

design time is critical. A way to achieve it is embedding adaptive facilities within the 

very computing infrastructure – the middleware - upon which the distributed target 

system is built. A number of middleware platforms have been conceived, which offer 

some set of dynamic adaptation capabilities as a premium for applications built with 

and operating on top of themselves. An adaptive middleware can either be developed 

ad hoc, such as Conic [3] and Polylith [1], which are among the earliest middleware 

prototypes providing support for the dynamic reconfiguration of the architectural 
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layout and the interconnections of distributed applications; or it can represent an 

enhancement of some established or standard computing platform with additional 

features to address certain aspects of dynamic adaptation. For example, 2K / dynamic 

TAO [2] can reconfigure the real-time TAO ORB [127], which in turn offers features 

and policies for the optimization of basic CORBA services; BARK [4], instead, can 

be used for dynamic (re-)deployment of Enterprise Java Beans components. 

Internalized solutions, especially if properly accounted for since early design, can 

extensively cover and keep under control a wide spectrum of dynamic adaptation 

concerns . However, they also have several limitations, in particular when viewed in 

the context of large-scale, heterogeneous, component-based systems. 

For example, the hardcoding of specific adaptive provisions at the component 

granularity can many times limit the set of adaptations that can be carried out without 

re-building the target, whereas they may need to change for various reasons, for 

instance because of unexpected component usage, or because they may not be 

flexible enough to harmonize with system-wide adaptation policies. Built-in dynamic 

adaptation code also tends to make each component more complex, and thus intensify 

maintenance and evolution difficulties. 

Moreover, when internalized adaptation is implemented end-to-end – for example via 

an adaptive middleware - all service components need to be assembled from the start 

according to that middleware and the computing model it offers. This introduces a 

rather strong dependency between the actors and subjects of dynamic adaptation. 

And, of course, the spectrum and granularity of possible adaptations remains still 
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restricted by the set of adaptation primitives made available by the specific 

middleware. 

But possibly the most important criticism concerning internalized dynamic adaptation 

regards third-party composition. When the target system includes legacy, commercial 

off-the-shelf (COTS) or otherwise third-party components, which may often be the 

case in large-scale distributed systems, internalized adaptation can be exerted only on 

those portions of the overall system that are developed either to be intrinsically 

adaptive, or to comply with the computing model of an underlying adaptive 

middleware. Third-party elements that might be critical for the overall system may be 

left out: in such a scenario, achieving a comprehensive and coherent end-to-end 

dynamic adaptation of the target becomes harder. 

In contrast, an externalized dynamic adaptation solution aims at retrofitting 

components and entire systems with the desired reconfiguration, self-healing, self-

management, etc. capabilities, independently from ownership considerations. The 

externalized approach applies in principle equally to legacy systems or systems built 

by composition, and to newly developed systems, since its characteristic is to remain 

orthogonal with respect to the adaptation target. 

Although externalized dynamic adaptation is quite general in principle, its feasibility 

is limited by a couple of critical pre-requisites: the availability of mechanisms to 

carry out the monitoring and actuation upon the target system. Among the major 

capabilities needed for dynamic adaptation mentioned in Section 1, monitoring and 

actuation are crucial since they represent unavoidable points of contact with the 

adaptation target. While internally adaptive systems and components provide those 
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capabilities by nature, an externalized dynamic adaptation facility must assume and 

count on either the availability of accessible monitoring and actuation features (which 

can be built in the legacy components to be adapted, or offered by their execution 

environment), or alternatively the possibility to programmatically extend those 

components to expose enough monitoring and actuation points for its purposes. 

The granularity of the monitoring and actuation functionality exposed to an 

externalized facility is also very important. Dynamic adaptation must be able – in the 

most general case – to acquire data and intervene at all of the following granularity 

levels: 

•  On entities that can be recognized inside a single component; for example, on 

single parameters or modules that influence some aspect of the component 

functionality. 

• On a component in isolation, for example to instantiate or take down a 

component. 

• On subsystems, i.e., set of interrelated components: for example on the connector 

managing the interactions of two communicating components. 

• On the target system as a whole: for example for the (re-)deployment of the 

system in a given configuration. 

Therefore, an externalized dynamic adaptation platform should strive to have 

monitoring and actuation facilities that cover all the levels above. 

Those pre-requisites are less demanding than they may appear, as a spectrum of 

options to comply with them is available most of the times. First of all, monitoring 

and actuation may be offered natively to a certain degree. That happens for example 
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in a large amount of commercial software products that choose to implement and 

expose some management facilities, either constructed ad hoc or – increasingly 

common – in compliance with established frameworks, such as SNMP [128] which 

defines general-purpose networked entities for passive (monitoring) and active 

(actuation) management of hardware and software, JMX [129], which provides 

similar management facilities specifically for Java-based software platforms and 

applications, WBEM [130], which defines guidelines and technologies for 

standardized Web-based management of enterprise computing environments, WMI 

[131], which adopts WBEM for the unified management of Windows environments 

and applications running upon them, or others. Those frameworks also typically 

provide means to extend and customize the native basic facilities, to cover particular 

needs with relative effort and without modifications to the target components. 

For software that sits on top of some middleware platform, it is also generally 

possible to come up with other components devoted to intercepting and manipulating 

middleware interactions as needed, as shown for example in [10], thus enabling the 

monitoring and actuation of the architectural connectors of the target system. 

Even more commonly, a lot of software offers integration or extension means, in the 

form of some APIs, which allow the interconnection with other software. That way, 

wrappers of different kinds can be developed to exert some form of monitoring and 

actuation, limited to whatever features of the target can be reached through the 

exposed APIs. 

Furthermore, numerous techniques for code instrumentation that augment the target 

system can be used, either as an alternative or a supplement to the ones outlined 
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above. Although such lower-level techniques may represent the most powerful kind 

of tool for exerting ad hoc monitoring and actuation on generic software that does not 

natively provides those capabilities in any other way, they typically demand a 

significant deal of knowledge of the innards of the target. Instrumentation often 

assumes source code availability, such as for instance in AIDE [63]. Other techniques 

enable to work on object code (like for example ProbeMeister [64] for Java byte 

code, or mediating connectors [65] for WIN32 library wrapping), rather than source 

code; however, even those techniques may need to be guided by a detailed knowledge 

of the software to be instrumented, down to the level of how certain invocation chains 

relate to the behavior and functionality of a given component. 

Limited to the monitoring role, increasingly used logging and log inspection facilities 

[133], as well as tools for the inspection of network traffic (such as Antura [132]), can 

also provide a wealth of raw data about various facets of application behavior. 

Finally, operating system-level facilities can be typically exploited as low-level 

means for coarse-grained monitoring and actuation, with respect to processes and 

main system resources. 

These issues will not be discussed in further detail – except when presenting the 

implementation of the Workflakes within the KX prototype and the relative case 

studies - since they do not represent a major focus of this research. However, notice 

how the availability of any of the approaches outlined above, or of a combination 

thereof, may satisfy the externalized dynamic adaptation pre-requisites of monitoring 

and actuation in a large number of cases. In practice, only software components that 

constitute complete black boxes, use totally proprietary interaction protocols, and 
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furthermore do not permit any interactions except the ones mandated by their role 

within the target application are impervious to be monitored or actuated. 

While – as discussed above – monitoring and actuation are necessarily tightly coupled 

with the target system, its features, its technological underpinnings and its 

implementation, the other major capabilities of dynamic adaptation, i.e., diagnostics, 

decision and coordination, can remain disjoint from any such consideration. 

Figure 2 is a variation of  that highlights the dependencies and the data / 

control flow between the various dynamic adaptation roles and the target system; it 

graphically suggests how the diagnostics, decision and coordination roles are those 

that mark most clearly the separation between the system to be adapted and the 

system exerting the dynamic adaptation. That separation also means that in an 

externalized dynamic adaptation platform, multiple approaches to achieve 

diagnostics, decision and coordination can be used, and that the options chosen would 

strongly characterize that platform. Conversely, the choice of how to fulfill the 

monitoring and actuation role may often be dictated by the nature and technology of 

the target system 

Figure 1

That vision of target-independent diagnostics, decision, and coordination does not 

imply that those capabilities can be achieved within a specific dynamic adaptation 

application independently of the characteristics of the software system to be adapted. 

In fact, the implementation of the diagnostic, decision and coordination mechanisms 

must be customized and informed each time with knowledge modeling the problem 

logic and the environment at hand. That knowledge about the target system must be 

represented in a format that is understood by all of those roles, and kept in a 
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repository that is accessible to, but remain independent from them. That way, it is not 

necessary to embed knowledge about the target system directly in the diagnostics, 

decision and coordination role, but it is possible to develop generic facilities which 

are supported by behavioral models and corresponding tools. (More details on 

behavioral models and their importance, in particular in the context of externalized 

dynamic adaptation, are provided in Section 2.2). 

Target Software 
Actuation System 

Monitoring 

Sensors data Effectors commands 

Decision Coordination Diagnostics 
  

 

Figure 2: Interactions of dynamic adaptation roles with the target system. 

2.2 Reference Architecture 

It is useful at this point to introduce a reference model for the architecture of an 

externalized dynamic adaptation platform, in order to make more concrete the 

intuition at the basis of the closed control loop vision, as well as the discussion of the 

various roles participating in it and of their inter-relationships (shown in Figure 2). 

That reference model is also referred to in the remainder as a conceptual architecture 

for externalized dynamic adaptation, since it provides high-level as well as 
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operational blueprints, to which the design and the implementation of concrete 

software platforms should adhere. 

One of the major joint undertakings in the DARPA DASADA program [56], under 

which this research was developed, was to come up with such a conceptual 

architecture, with an additional requirement regarding its generality. An externalized 

dynamic adaptation infrastructure needs to be applicable in diverse usage and 

technological contexts; therefore great attention must be paid to its interoperability 

with a variety of adaptation targets. Such generality in turn can be achieved via 

standardization of the interactions and – consequently – the interfaces between the 

platform components. Standardization enables to choose among possibly different 

approaches and techniques that can be used to fulfill each of the major dynamic 

adaptation roles, and to accommodate more easily within the model those that best 

suit the target system. In the DARPA DASADA program, much work has been 

devoted to the development of proposals for standard, target- and implementation-

independent APIs for sensors2 [58] and gauges [59], which are, as we will see, the 

platform elements fulfilling respectively the monitoring and diagnostic role. The 

decision and control roles in a dynamic adaptation platform are however less well 

understood, thus remain further from standardization. 

As a result, a reference model was originated, as a common proposal by a consortium 

of researchers participating in DASADA, as explained in [6] [57].The goal of this 

model is the full automation of adaptations that must be carried out on the target 

system. Therefore, it operates at level 4 (out of 5) of the autonomic capability model, 

as defined in [32], which addresses the resolution of technical aspects relative to 
                                                 
2 Sometimes also referred to as probes. 
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automation, but does not take in account or integrate in the control loop any business 

or organization-wide concerns (addressed instead in level 5). 

Figure 3

Figure 3: Layout of an externalized platform for dynamic adaptation. 

 depicts the resulting conceptual architecture: the major elements constituting 

the architecture are identified, while no assumption of any kind about the target 

system is made. 
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Notice how the externalized dynamic adaptation platform remains physically and 

logically distinct and separated from its target, although some of the platform 

elements may be co-located with target components; in particular, sensors and 

effectors, which respectively fulfill the monitoring and the actuation roles of dynamic 

adaptation, represent the contact points between the platform and the target system 

and are most likely co-located. However, since the feedback loop is handled outside 

of the target application, it is possible to maintain a clear separation between a wealth 

of reusable, common adaptation mechanisms and the target system specifics. 
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The conceptual architecture in  follows a layered style, which allows to 

clearly separate – visually but, more importantly, logically - the various roles (a 

similar separation of concerns is advocated in other dynamic adaptation initiatives, 

such as [60]). The layered architecture also enables to highlight the interactions 

among the dynamic adaptation roles and the corresponding platform components. In 

the Figure, data exchanges are represented by solid arrows and by horizontal lines of 

communication (or buses) among layers; the two buses in the conceptual architecture 

(the Sensor and Gauge Bus) represent logically distinct communication elements, 

each devoted to interfacing only certain architectural components through the 

transport of specific kinds of information. In an implementation, the same physical 

communication facility could be used for all logical buses. Control interactions are 

represented instead by dotted arrows, and indicate the path along which the dynamic 

adaptation interventions occur. 

Figure 3

The monitoring layer first gathers information from the running target system, by 

instrumenting it with sensors. Sensors, which should be minimally invasive, typically 

generate times series of events containing raw local data, and report via a Sensor Bus 

to the diagnostic layer. There, information is filtered, aggregated, correlated and 

evaluated by gauges, and findings – that is, abstract semantic events recognized from 

complex event patterns - are reported to the Gauge Bus. Then the decision and 

coordination layer analyzes the implications of the gauge findings with respect to the 

target system functioning and performance, and makes decisions on whether to carry 

out some dynamic adaptation(s). Adaptation actions would be performed at the 

actuation layer, under the orchestration of one or more controllers. Implementation-
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level effectors would thus adapt (i.e., reconfigure, repair, tune, etc.) individual 

components, as well as connectors and other substructures, of the target system.  

Notice how according to this design, actuations can in principle occur not only on the 

target system, but also on elements of the same dynamic adaptation platform, such as 

gauges and probes. That is intended to provide the dynamic adaptation platform with 

dynamic meta- or self-adaptation capabilities (for instance, for on-the-fly re-

configuration of sensors or gauges), whose significance will be discussed further in 

Section 6.3. 

Notice also how the view provided in  in fact combines the decision and 

coordination roles within the controller components of the platform. Controllers 

receive and interpret gauge output, perform decision analysis, choose adaptation 

strategies, and coordinate appropriately the work of effectors. Decision and 

coordination can be in principle as well as in practice kept separated in the 

architecture. Anyhow, they are inherently closely inter-related, and combining them 

offers the potential for continual and incremental steering of the adaptation: the 

controller can immediately consider intermediate outputs originated from effectors’ 

work as well as gauges, which can potentially lead to on-the-fly modifications of the 

adaptation plan itself. 

Figure 3

The conceptual architecture also highlights the importance and pervasiveness of 

knowledge coming from formal (i.e., machine-readable) behavioral models of the 

target system: in fact, that knowledge can be employed to drive the target 

instrumentation with sensors; to contextualize the interpretation of collected 

information by gauges; to inform decisions taken by controllers; to guide how they 
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must orchestrate the work of the effectors; and to store the actual repair plans to be 

executed. That formal knowledge can be captured and made available to the dynamic 

adaptation architecture via suitable notations and models, which must encompass 

numerous aspects of the target system, like functional and non-functional properties, 

protocols, architecture, distribution layout, etc. 

One would be hard pressed to indicate a single form of modeling as the most suitable 

for capturing such a multi-faceted knowledge; it is indeed possible that those various 

concerns are better captured not by a single, but by multiple complementary 

representations. Also, dynamic adaptation does not have complete, a priori target 

analysis and modeling as a pre-requisite. Models can instead be developed piecemeal 

and selectively, with respect to those target substructures and facets that are relevant 

to each dynamic adaptation application. Model knowledge could also emerge as a 

result of the accumulation of monitoring information, upon which inference about the 

run-time structure, properties and behavior of the target system could be conducted 

dynamically, like in Software Surveyor [66]. Furthermore, although it is certainly 

desirable to leverage any pre-existing codified knowledge (deriving, for example, 

from design artifacts of the target), or to develop exchangeable models in some 

unified formalism or set thereof, that effort may not be necessary. In particular, since 

at the current stage of the art no consensus exists on standards for modeling 

distributed software applications in relation to their dynamic adaptation, even 

proprietary models constructed and maintained internally by each platform element 

that necessitates them can serve well. Software modeling connected to dynamic 

adaptation is the subject of a lot of active research; for example, like in [61] [62], it 
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can be fruitfully approached from the perspective of Architecture Description 

Languages (ADLs) and tools, by extending them to cover issues related to capturing, 

checking and guiding the evolution of run-time software architectures. Further 

discussion of such modeling issues is in general outside the scope of this work, except 

what regards enactable models of coordination, which are discussed extensively in 

Sections 2.3 to 2.5. 

The Kinestethics eXtreme (KX) platform developed at the Programming Systems Lab 

of Columbia University complies with the conceptual architecture discussed above. In 

particular, in KX, the decentralized Workflakes process enactment engine has been 

chosen for the controllers. That approach effectively constitutes an application of 

process / workflow technology as a software coordination paradigm. The motivation 

for that choice can be explained by describing the major requirements of a 

coordination facility for externalized dynamic adaptation, and how workflow fulfills 

them. To introduce that discussion, an overview of some other approaches to the 

coordination of the behavior of software applications must be provided first. 

2.3 Perspectives on software coordination 

In Computer Science, there have been numerous efforts devoted to studying general-

purpose abstractions and formalisms that can be employed to express coordination 

separately from computation concerns, and that can be applied in multiple application 

domains. This trend was perhaps initiated by Carriero and Gelernter [96], who 

proposed the strict separation of concerns between coordination and computation in 

programming languages. They define coordination as “the process of building 

programs by gluing together ensembles of active entities”; a coordination model 
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takes the role of the glue that binds together the computational activities carried out 

by the entities in the ensemble, and a coordination language is the linguistic 

embodiment of a coordination model, offering facilities to express synchronization, 

communication, creation and termination of the coordinated computations. A seminal 

example of a pure, general-purpose coordination language is Linda [97] [98]. Linda 

provides a set of simple, generic but powerful linguistic constructs and architectural 

abstractions for the coordination of distributed systems and parallel programs. The 

Linda coordination model is founded on the concept of a tuple space, i.e., a global 

shared data structure that serves as the only mediator of the interactions among all 

components of the system. The tuple space model, which owes much to the classic 

blackboard architecture [99] [100] of many Distributed Artificial Intelligence (DAI) 

systems, effectively provides an elegant architectural style for distributed systems. 

Since the coordination model promoted by Linda can be implemented easily on top of 

most conventional programming languages [137] and is application domain-neutral, 

Linda has become a reference point for new coordination models and languages, and 

the origin of numerous variations, derivations, and specializations in a myriad of 

Linda-based models and systems, including commercial implementations, such as the 

JavaSpacesTM [101] by SUN Microsystems. 

Those models all share with the original Linda the trait of being data-driven, as 

opposed to control-driven [102]. In data-driven approaches, the coordination facilities 

are typically added on top of a “host” computational language: the coordination 

statements result often intertwined with the computational statements and usually rely 

on data coming from computation results to implement and regulate communication, 
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synchronization etc. As a consequence, the coordination model is likely to remain 

implicit. In control-driven approaches, instead, coordination means remain 

linguistically separate from computational ones: that forces a clear separation 

between coordination and computation, and “pure” coordination-based controllers 

can be explicitly developed. 

Many programming languages tackling data- as well as control-driven coordination 

have been conceived in the last decade, warranting – among other things - an 

international conference series (see [146]). However, some interesting perspectives to 

the study and application of coordination in computing have also been contributed by 

other disciplines, besides programming languages. 

For example, across the years, a number of initiatives in the Software Engineering 

community have been devoted to specifying, modeling and developing computing 

systems by focusing on describing their interactions, following the recognition of the 

importance of the concept of architectural connectors between components [104]. 

Those approaches have evolved from Module Interconnection Languages (MILs) 

[138], to Megaprogramming [140], to Architecture Description Languages [103], and 

– at the same time – from bottom-up to top-down, from imperative to declarative, and 

from implementation- to specification-oriented tools. MILs were intended as tools for 

programming-in-the-large [139]; they operated at the implementation level, and 

would generate system-specific code for tying together already implemented 

components. 

Megaprogramming languages, such as CLAM [193], have a similar approach, but 

focus on the interoperation within large meta-systems made of megamodules (that is, 
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systems-of-systems), and take a more abstract perspective, with a few primitives that 

describe mainly how to schedule the invocations among megamodules. Both MILs 

and megaprogramming advocate a largely imperative, compositional and bottom-up 

approach to the specification of coordination, addressing mainly the development of 

glue code among computational components, which implements the coordination 

directives. 

ADLs provide formalisms that predicate and reason about software architectures 

[141] [142], in terms of components, connectors and their instantiated configurations. 

Their main goal is to provide a high-level, top-down view – a blueprint - of a 

distributed software system. As observed in [104], connectors are the loci in ADLs 

for expressing coordination: since the nature of all interactions within an architecture 

is captured by connectors, different types of connectors can be modeled with enough 

detail to define and support different coordination models, and, once instantiated in a 

given system configuration, to determine the coordination aspects regulating the 

behavior of a distributed software system. ADLs have mainly declarative 

connotations, and are primarily used as specifications tools, even if they 

incrementally tend to extend their guidance from design onto the later phases of the 

SW development process [203]. A further push towards the investigation and the 

extension of ADLs as languages that enforce the features of the architectural model 

(including coordination) onto a running implementation of that model in the post-

deployment phase is only at the beginning [61] [62]. 

Another discipline that has been investigating software coordination themes is that of 

multi-agent systems. Multi-agent systems are rooted in Distributed Artificial 
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Intelligence (DAI); however, in the context of the affirmation of the Internet as the 

dominant information as well as computational global infrastructure, agents are 

increasingly being applied also to mainstream application domains, including the 

gathering and processing of widely distributed information, data mining, document 

management, electronic commerce, and others [14]. 

Therefore, nowadays, numerous state-of-the-art distributed systems are organized and 

operate as a community of software agents: agents are “smart” and “active” 

components, which may have characteristics such as substantial autonomy, awareness 

and knowledge of the application domain, some degree of reasoning and decisional 

power, sometimes code mobility, and more [143]. In such a scenario, in which agent 

communities may be self-organizing to a degree, the coordination model can be 

dynamically influenced by the very subjects of coordination. That contrasts with more 

traditional coordination approaches that adhere to a view in which components are 

only passive subjects of coordination. 

In multi-agent systems, coordination concerns remain well separated from 

computations by nature: an agent application is largely defined in terms of the 

cooperation pattern that spans the various agents. Each agent has its functional 

specificity and a set of computational capabilities, which may be very different from 

those of other agents: the agents in a community contribute those capabilities in a 

coordinated way, in order to perform distributed computations and to achieve some 

overarching result or goal, or offer some service.  

The goals of an agent-based application and the ways to pursue them can be 

expressed in many ways. Generally speaking, the cooperation among the agents 

 



36 

towards their goal is carried out via a series of agent-to-agent interactions, with agents 

requiring services to each other on the basis of their current knowledge about the 

other agents’ capabilities, their state, the state of the distributed computation, and its 

“distance” from the intended goal. 

Strategies (or plans) are the typical means to express the converging behavior of an 

agent community towards its computational goal. How agents interpret and execute a 

plan depends on the underlying coordination model and the corresponding Agent 

Coordination Language (ACL) [17]. The theoretical foundations of most agent 

coordination languages are generically rooted in speech-act theory [115] [116]; in 

some of the most prominent ACLs, such as KQML [18], or FIPA [110], that 

derivation is clearly visible, since they are based upon a set of semantically 

standardized communication acts. However, the spectrum of coordination paradigms 

in use in agent-based systems is wide [13]. Depending on the characteristics of the 

agent infrastructure as well as of the application domain, agent coordination may be 

implemented with – among others - general-purpose coordination models such as 

tuple spaces, scripting languages, rule bases, and also decentralized process planning 

and enactment (as will be discussed in Section 2.4). 

Depending on the coordination model of choice, the level of flexibility and dynamism 

in executing an agent plan may vary from rather inflexible organizational structuring 

[15] (i.e., a coordination plan is defined a priori and superimposed by a master 

coordinator over the agent community) on one extreme, to fully dynamic or run-time 

negotiation [16], (i.e., the plan is continuously evaluated and decided among the 
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agents throughout execution, according to some self-organizing scheme of the 

community [13]) at the other extreme. 

In run-time negotiation, the coordination scheme is often expressed as a form of 

declarative knowledge, and the resulting plan towards the goal is said to emerge from 

that know-how, as well as the operating conditions and the input of the agent 

community. Those plans are very open-ended: two different runs of the same agent 

community, aiming at solving the same computational problem, are likely to differ 

even considerably under a full negotiation model. The level of sophistication of the 

knowledge codification and of the mechanisms employed to make good use of that 

knowledge greatly varies - of course - with the complexity of the problem at hand: at 

times it can be captured with some deterministic script loaded in each agent; other 

times, however, it may be necessary to provide agents with significant semantic and 

reasoning capabilities, and a lot of autonomy in determining their own course of 

action. 

In the organizational structuring scheme, instead, a rather prescriptive form of plan is 

assumed, which – instead of emerging bottom-up - is explicated a priori in a top-

down fashion and assigned to the responsibility of a master coordinator. The plan is 

then carried out in a centralized fashion by that coordinator, which orchestrates the 

operation of a number of peripheral agents. Notice how centralization here is not so 

much physical or topological, but rather logical and organizational: it is the function 

of control that the coordinator provides in an organizational structuring scheme that is 

logically centralized, which means very limited autonomy is left to other the 

participating agents. 
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Many agent coordination systems, in practice, employ approaches that lie in between 

the two extremes described above, and try to variously reconcile bottom-up autonomy 

and top-down guidance: one possibility is to make organizational structuring 

hierarchical, through the explicit delegation of portions of the plan to different 

manager agents (see for example [174]); another variant is to have a high-level 

centralized plan, which enforces top-down guidance to a certain level of detail, but 

leaves to the autonomy of agents the resolution of the finer-grained parts of the plan, 

which emerge from a network of agent-to-agent interactions. 

Another paradigm that can be fruitfully employed to implement coordination models 

is that of rule-based programming. Rule-based approaches have been extensively 

used in Artificial Intelligence expert systems, with prominent examples such as OPS5 

[105] and CLIPS [106], principally to provide automated reasoning and decision 

support. From there, they have extended their reach to the implementation of flexible 

decision systems, widely used in application domains such as Telecommunications 

Management Networks [147], data management [144], and others.  

Among rule programming paradigms, one of the most widely used is the Event-

Action paradigm. According to it, rules are composed of a left-hand side (the Event), 

which is a declarative description of a pattern that defines some situation of interest, 

and a right-hand side (the Action), which is an imperative program to be performed 

when that situation occurs. In its basic form, the Event-Action paradigm is 

particularly suited to specify reactive behaviors in a system, and it is practically 

stateless. However, numerous variations that introduce and exploit a notion of state in 

the rule-based system exist, through the definition of so-called Event-Condition-
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Action (ECA) rules [145]. Conditions are predicates over the state of the system – as 

well as the content of the received event: the state must be somehow available and 

known to components that receive events and must execute actions: only if the 

condition attached to a matching rule is verified, the corresponding action gets fired. 

A further enhancement is to add Alternative Actions, moving from the ECA to the 

ECAA rules paradigm [194], which allows defining actions that are fired in case the 

condition of a matching rule is NOT satisfied. 

Rule-based programming with paradigms such as ECA can be used to express 

coordination: a rule execution engine managing a set of rules (a rule base) can direct 

the work of a score of computational subjects, for example distributed objects [107], 

by enforcing the execution of actions by those subjects whenever certain situations 

occur. While rules in their basic form are eminently reactive, they can also provide 

forms of proactive coordination, when the actions in the right-hand sides of rules 

bring side effects also on the internal state of the rule system, and when they are 

enriched with mechanisms for backward- and forward-chaining, such as pre-and post 

conditions, also known sometimes as guards. 

In rule-based systems, the overall logic is very fragmented and is defined bottom up. 

The overall pattern of coordination remains thus largely implicit: it can be derived 

only by evaluating how rules can be chained to one another, that is, how imperative 

right-hand sides of some rules can bring side effects that match the declarative left-

hand side of other rules. As the rule base grows in size, that task becomes 

increasingly difficult. Correspondingly, it may also become hard and counter-intuitive 
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to translate a top-down view of a complex coordination plan in terms of a set of rules 

that implement that plan. 

2.4 Employing processes for software coordination 

Workflow technology aims at the support of complex collaborative processes, 

composed of activities, in which the synchronization and coordination of the activities 

and the actors having a part in them (i.e., the stakeholders of the process) is an 

essential characteristic. 

Traditionally, workflow technology provides paradigms, techniques and tools that 

support, guide and automate the management of business practices. Among the 

common domains of workflow applications, there are: clerical work, administrative 

procedures, commercial transactions (e.g., business-to-business transactions), 

document management, product development (e.g., software development), etc. From 

those examples, it can be seen how traditional workflow applications see a central 

role for humans, whose work is guided by the process model, and facilitated and 

automated via a set of computer tools that get integrated into the process: typical 

goals are to increase productivity and ensure consistent levels of quality to human-

intensive practice that can benefit from automation as well as the organized use of 

computerized tools. 

Workflow technology is based on the concept of an explicit process model that 

describes process to be followed, and on facilities (collectively termed the workflow 

or process enactment engine) for supporting, guiding and automating the 

collaborative work of stakeholders according to that model [134]. 
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Activities, also referred to as tasks, or steps, among other denominations, are usually 

at the basis of workflow modeling: activities allow for process construction, 

reasoning, and composition. A model includes multiple activities, which are linked 

together by a set of explicit dependencies, such as temporal and causal relationships, 

constrained transitioning, synchronization, conditional execution, and more. Those 

dependencies define how the process flows, in terms of data as well as control (i.e., 

coordination among activities): at any time during the enactment of a process, a 

number of activities can be taking place concurrently, provided that their 

dependencies as defined in the model are satisfied. Activities can be simply a 

synchronization point for the data and control flow, but more often they represent 

actual units of work, which need to be carried out for the process to proceed. The 

execution of the work associated to an activity can be thought of as its side effect 

outside the realm of the model and within the “real world”, that is, the environment in 

which the process unfolds and upon which it predicates. Depending on the application 

at hand, a side effect can for instance be a computation by an helper application, the 

invocation of an external tool, the allocation and use of resources, the assignment of 

duties to stakeholders, the initiation or conclusion of some transaction, the production 

of a document, the filling of an order, and so on. 

As implied by the examples above, carrying out the work of an activity can require 

the acquisition, use and manipulation of a combination of artifacts that must be 

indicated in the activity definition, such as input and output data, tools and resources. 

The work of an activity is also typically associated to some actor, which may have a 

specific role or responsibility in the process. 

 



42 

For instance, in a software development process, an activity can represent the 

building of a new version of a software product. For such a task, the input artifacts 

would be the source files and  the output artifacts would be the binary files produced 

by the build; the tools could be a compiler and a linker, the resources could be a make 

script and the source code repository, and the actor in charge of the task would have 

the role of a software developer. 

In Figure 4, the representation of a single activity in the graphic IDEF0 formalism 

[197] is shown for illustration. It includes the definition of input and output artifacts 

manipulated by the activity, the resources the activity needs to engage to carry out the 

corresponding unit of work, and control stimuli that can originate from other 

activities or external entities. 

Activity A

Input
Artifacts

Output 
Artifacts

Resources

Controls

 

Figure 4: Representation of a generic process activity. 

In Figure 5, an illustrative example of a workflow is also shown, with sequential and 

parallel dependencies between activities that are established directly from the data 

flow. For the sake of simplicity, control flow constructs are omitted in this example. 
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By modeling processes along the lines described above, workflow technology is able 

to describe complex, collaborative work practices in the form of explicit, top-down 

plans that break down the overall work into a multiplicity of finer-grained steps and a 

network of inter-dependencies among steps. 

Activity A Input Ia 
Output Of 

Activity C 
Activity F 

Resource

Activity B Rc Resource 
Rf2 

Resource 
Rf1 

Resource 
Rb Activity D Activity E 

Resource
Rd 

 

Figure 5: Example of workflow specification. 

The workflow paradigm has along the years reached a significant level of maturity. 

For example, the Workflow Management Coalition (WfMC, see 

http://www.wfmc.org/) was established in 1993 to establish interoperability among 

then emerging workflow formalisms and software products; today it counts more than 

300 member organizations, including most developers of commercial workflow 

systems and major IT product developers in general. Along the years, the workflow 

community has delivered a number of results, several of which relate to coordination 

languages and models. For example, a number of workflow specification formalisms 

have been conceived (some of the latest examples are BPEL4WS [95], XLANG [152] 

and XPDL [198]): those languages effectively provide high-level coordination 
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models and allow to express, author and maintain those models. Those formalisms 

may have both declarative and imperative connotations, and accommodate ways to 

enact processes both reactively (that is, initiate a workflow on the basis of some 

external stimulus) and proactively (that is, initiate a workflow on the basis of some 

specific internal state configuration) . Workflow formalisms, one the one hand, make 

possible and easy to carry out abstract analysis and reasoning, for discussion and 

communication of the process among human stakeholders, and, on the other hand, are 

sufficiently formal and precise (i.e., machine-executable), to provide guidance and 

enforcement of the coordination model by enactment engines. 

From a technological point of view, workflow enactment engines have been evolving 

in the last decade from centralized to de-centralized architectures. Centralized 

enactment engines follows some variant of the classic client/server paradigm, which 

is in fact effective only for systems running on LANs and having a limited number of 

relatively clustered users and computer hosts. Decentralized enactment engines, 

instead, have more dispersed computing architectures (for example, hierarchical or 

peer-to-peer combinations of task processors, which collectively form the enactment  

engine), coupled with distributed information infrastructures as well as distributed 

organizational and work structures, which commonly leverage the Internet as a 

substrate, and its related standards and applications (such as the WWW) as a 

paradigm. Some early examples of decentralized workflow engines are ProcessWall 

[135], Oz [21] and Endeavors [27]. Current decentralized industrial products include 

Biztalk Server [195] by Microsoft and WebSphere MQ Workflow [196] by IBM. 

Decentralization greatly expands the usability of workflow technology, for example 
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to cooperative processes involving multiple organizations; it also opens the way to 

innovative means for the definitions, assignment and execution of processes and 

fragments thereof among task processors. 

In the last few years, in part due to the maturity and the insights achieved in the field, 

approaches and techniques that have been established for and have become typical of 

workflow have begun to be applied for other purposes, besides the support and 

guidance of human-intensive collaborative practices. In particular, a number of 

problems regarding the orchestration of multi-party interactions of software 

applications or components may be mapped to the execution of some kind of process. 

In those problems, workflow takes effectively the role of a software coordination 

paradigm – similar to the approaches seen in Section 2.3 - which leverages the 

process model for the specification of coordination. Among workflow formalisms, 

one that has pioneered the application of process semantics specifically as a 

coordination paradigm, and has a focus on the coordination of software ensembles, is 

Little-JIL [136]. 

Some of the distinguishing characteristics that can be offered by workflow as a 

software coordination paradigm are the following: 

• A process specification provides a top-down view of the coordination model. 

• The coordination model adopted is very explicit. 

• Being top-down and explicit, process specifications tend to provide coordination 

in the form of prescriptive guidance (as opposed to open-ended negotiation). 

The applicability of workflow concepts to software coordination goes beyond 

dynamic software adaptation, which is the focus of this work; fields of application are 
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possible and are being explored. To highlight the general issues and provide 

motivating support our choice of workflow-based coordination in the framework of 

the KX project, we hereby discuss two other such applications: how workflow can be 

employed for the automated composition of value-added software services from pre-

existing computing entities; and how it can represent a valid paradigm to coordinate 

the work of a community of software agents towards a common computational goal, 

according to the discussion about agents in Section 2.3. Those two domains3 are 

disjoint from the domain of dynamic adaptation; however, they both present 

characteristics that can also be recognized as issues relevant to the coordination of 

dynamic software adaptation. 

Orchestration of software composition 

A first important class of problems that seeks to use workflow for software 

coordination can be characterized as the orchestration of the composition of software 

systems and services. In the context of software composition, the word 

“orchestration” indicates the automation, in accord to some application-level logic, of 

the interactions among multiple computing entities, with the aim to come up with a 

composite computational entity that provides a new service. With respect to 

orchestrated software composition, workflow can be employed for the definition and 

enactment of the dynamics regulating the automated wiring of the different software 

components or applications that must work together towards the composite service. 

The modalities of such an orchestrated composition may greatly vary, for instance 

with respect to the degree of dynamism allowed (e.g., pre-defined vs. on-the-fly 
                                                 
3 Notice that the choice of those two particular problems in this discussion does not imply that other 
automated software coordination problems are not suitable to be addressed with workflow techniques. 
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composition), the level of granularity of the participating software entities (e.g., fine-

grained components vs. full-fledged, self-contained applications), the intended 

lifespan of the newly composed service (e.g., opportunistic composition of a one-shot 

new service vs. persistent composition of a permanent new service). The kind and the 

complexity of the coordination that must be exerted varies accordingly. 

A major contribution to the trend towards automated software composition originates 

from the increasing degree of pervasiveness reached by software assets within the 

enterprise, and by the need to integrate those assets together coherently. That is at the 

basis of Enterprise Application Integration (EAI) [199]. EAI, as a discipline, has two 

major, complementary concerns: a technological concern, which addresses the 

integration of all the information systems and productivity applications in a company 

onto a common integration substrate; and a business support concern, which 

addresses the automation of the interactions among the interoperating applications in 

accord with some logic that reflects the nature and the business model of the 

enterprise. 

Technically, EAI seeks a form of large-scale software composition, in which the 

software to be composed tends to be rather heterogeneous, self-contained and coarse-

grained, and the composition logic is largely derived from the business processes of 

the enterprise. EAI is often promoted and facilitated by the exposition of a wealth of 

enterprise functions and the corresponding information systems on a common and 

uniform computing and communications environment, such as that offered nowadays 

by corporate Intranets. Upon that basis, EAI platforms are typically founded on some 

form of middleware that pervades the company and supports long-duration and 
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complex transactions among participating applications. Furthermore, to capture and 

automate business processes, leading EAI platforms, such as BEA WebLogic 

Integration [148], or TIBCO BusinessWorks [149], often include a workflow notation 

and a corresponding enactment engine 

Notice how we are talking here primarily about application-to-application workflow, 

as opposed to the traditional workflow focus of supporting and automating human-

centered activities with tools (sometimes defined as human-to-application workflow). 

Application-to-application workflow glues enterprise software together by specifying 

some scripted control and data flow among them, including application bindings, 

composition constraints, data transformations, etc. The sophistication of the 

coordination facilities needed for carrying out the kind of automated composition 

sought in the EAI application domain is relative, since a lot is pre-defined and rather 

stable, at least for application integration within a single enterprise: for instance, the 

applications to be composed are well-known, hence there is no need for on-the-fly 

component lookup and recruitment, nor to dynamically overcome any unforeseen 

impedance mismatch between components. The major difficulty lies instead in 

modeling a potentially complex business process correctly in all its facets, and 

possibly in reconciling within that process any known idiosyncrasies of the 

participating applications (such as any process-in-the tool syndrome [37]). 

EAI initiatives, these days, also strive to surpass the boundaries of a single enterprise 

and its Information Technology infrastructure, in order to interconnect multiple 

enterprises that interact with and service each other, for instance in commercial 

supply chains. Application-to-application workflow thus extends onto larger-scale 
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company-to-company workflows, often by means of federation [150], that is, the 

composition of the separate and self-standing workflows of multiple organizations, 

some parts of which are made accessible as entry or composition points from outside 

each enterprise. 

Of course, beyond the boundaries of a single organization, the technical concerns 

about the integration of enterprise applications are greatly intensified, since a high 

level of interoperability between the IT infrastructures of the enterprises involved is 

necessary. That may still represent a considerable technical hurdle, in particular when 

trying to compose together largely diverse information systems and tool sets, hardly 

compatible middleware platforms and computing environments, etc. 

Once those “hard” (i.e., technology-based) interoperability issues can be reconciled, 

EAI – irrespective of scale – can be seen mostly as a “soft” (i.e., logical) 

interoperability question, which can be posed in terms of correctly expressing and 

carrying out the interactions among the various enterprise applications that need to 

work together for the task at hand. That is a coordination problem. 

Nowadays, the necessary level of interoperability can be achieved by exploiting - 

besides basic Internet protocols and services - recent advancements regarding 

standard and open means for the description, lookup and interaction of heterogeneous 

components over the Internet (such as the family of protocols and programmatic 

interfaces commonly known under the collective name of Web Services, initiated by 

industrial partnerships and now embraced and promoted by the World Wide Web 

Consortium - W3C [12]). 
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That trend has recently prompted a number of initiatives in WWW-based EAI that 

assume the availability of Web Services as the technology of choice for the generic 

interoperability substrate – within and across enterprises - and propose standard 

languages and frameworks (de jure or de facto) for modeling and developing business 

processes. Among the most noticeable initiatives there are BPEL4WS [95] 

(sponsored among others by corporations like IBM, BEA and Microsoft, and 

emerging from earlier efforts, such as WSFL [151] and XLANG [152]), and ebBPSS 

[153] (promoted by the ebXML consortium). 

Although the aforementioned initiatives aim specifically at defining formalisms and 

techniques that enable to wire together enterprise applications according to business 

processes, it is easy to observe how their relevance goes beyond the domain of EAI. 

Since they employ a single, uniform way to indistinctively wrap and invoke as Web 

Services components of any granularity, from simple function calls, to services, to 

entire applications, to the entry points of other complex, federated business processes, 

they address in fact the definition of coordination models for orchestrating generic 

networked computational units, at least those that can be exposed as Web Services. 

It remains to be seen how well BPEL or other solutions proposed in the specific EAI 

arena can gracefully extend to such a more generic view. The solution for many of the 

various issues related to orchestrated software composition is still of course very 

much an open research field, for example in cases that are characterized by a need for 

particularly flexible composition plans and for on-the-fly recruitment of service 

components, either in impromptu, one-shot compositions, like in DISCUS [124], or in 

services that are intended as more permanently available, like in DySCo [158]. Some 

 



51 

broad initiatives for the investigation of those open issues have been launched in the 

Web Services community: one prominent example is the Web Services Choreography 

Working Group of the W3C [94]. 

Outside the WWW-based world of Web Services, moreover, other initiatives exist, 

which see workflow as the glue of complex distributed applications in other 

computing contexts, such as for example GridFlow [50] for Grids. It remains to be 

seen whether all of those efforts can be consolidated, extended and generalized. 

However, for the purpose of this discussion, it is important to notice how workflow 

formalisms and techniques applied to application-to-application integration have 

gradually achieved a degree of maturity and recognition, which makes them a natural 

technological choice for the orchestrated composition of software. 

Orchestration of agent communities 

In Section 2.3, agent-based systems were discussed as a specific context in Computer 

Science in which the investigation of software coordination paradigms and languages 

is particularly active and relevant. Workflow-based coordination has been applied 

also in that context, to define and enact the plan employed by an agent community to 

reach its computational goal. 

Since workflow-based coordination naturally leans towards a form of prescriptive 

guidance, the orchestration of agent communities with an organizational structuring 

organization - which calls for a master coordinator – is particularly suitable to be 

expressed as a workflow, and to be enforced at run time by a process enactment 

engine. 
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Technically speaking, a de-centralized enactment engine composed of multiple task 

processors can be employed: many in the first wave of decentralized process 

enactment engines that have been extensively researched in the early 90’s (such as 

Adele [20], Oz [21], or Serendipity-II [22]), their current commercial-strength 

counterparts, such as BPWS4J [23], or TIBCO BPM [24], or undergoing academic 

and open-source initiatives, such as Cougaar [25], or Juliette [26], are suitable 

candidates, capable to maintain the logical centralization of coordination, while 

allowing for a physically distributed implementation of the coordinating entity, which 

scales together with the distribution of the agent community. One typical distribution 

scheme is a hierarchical organization of task processors. Sub-processes can be 

delegated to the various task processors, and all dependencies (such as causality or 

precedence) between sub-processes are to be resolved by a master task processor, 

taking care of the higher level of the process specification hierarchy. Each task 

processor thus takes the role of a delegated master coordinator and oversees a subset 

of the agents, which are regarded by the workflow as pools of resources of 

computational nature. 

Another approach is to associate in the distribution architecture the task processors to 

the software agents (that is the approach taken for example in Cougaar [25], which 

integrates software agents and task processors, and to a large extent in Juliette [26], 

which tends to co-locate task processors with computational executors of work 

associated to process steps). 

Workflow technology is also suitable for a number of agent coordination schemes 

that fall in between the two extremes of strict organizational structuring and full run-
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time plan negotiation. When a plan for reaching the goal is expressed as an explicit 

multi-participant process, such process can indicate in a proactive way what work 

stages must be executed at a given moment, and at the same time handle in a reactive 

way events and situations (including unexpected ones) that occur in the course of the 

cooperative work. The distinction between proactive and reactive behavior in a 

workflow that coordinates software agents is particularly important, since it closely 

mirrors the other distinction, between guidance and autonomy. In the distinction of 

responsibilities between the workflow engine and the software agents, proactivity 

maps to guidance: for example, the workflow engine assigns a certain task to a given 

software agent, which is put in charge of its execution. Reactivity instead maps to 

autonomy: for example, a software agent can carry out a certain portion of the plan as 

a reaction to some event, thus exerting some discretional power. 

In a case in which autonomy and discretional capabilities on the part of the agents can 

be exploited, substantial amounts of complexity in the workflow can be deferred from 

the design time to the enactment time. In that case, the workflow specification does 

not need to be excruciatingly prescriptive, and may describe the coordination patterns 

among agents only at a relatively high level of abstraction. Consequentially, many of 

the more dynamic aspects of the plan may become variable, in accordance with the 

degree of discretional autonomy enjoyed by the various agents in the community. 

In general, how to reach the most effective trade-off between autonomy and guidance 

depends on the characteristics of the cooperation capabilities built in the agent 

framework, as well as on the workflow paradigm and its implementation within the 

workflow enactment engine of choice. That trade-off constitutes one of the major 
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design decisions to be solved in order to adequately exploit workflow techniques to 

coordinate a group of distributed agents. 

From the discussion above, it should appear evident how workflow formalisms and 

techniques are complementary to a significant degree and sometimes even 

overlapping with software agents, in particular as far as coordination is concerned 

(see also [28]). By hybridizing the two domains, it becomes possible, on the one 

hand, to employ software agents to represent certain workflow actors, which can 

contribute to enhance the functionality of decentralized workflow enactment engines, 

as shown in [22] and [27]. On the other hand, it becomes feasible to co-opt within a 

workflow paradigm a substantial part of the mechanisms and information that are 

used for cooperation in an agent community, so that the workflow can be employed to 

orchestrate that cooperation. That task – as we discussed – is conceptually quite 

simple when the agent coordination model of choice is close to the organizational 

structuring extreme of the spectrum, and becomes instead increasingly more complex, 

as the coordination model drifts towards the other extreme of full run-time 

negotiation. 

2.5 Characteristics of coordination for dynamic adaptation 

Having discussed in Section 2.3 some of the leading software coordination 

paradigms, and in Section 2.4 how workflow technology can be regarded as a means 

for software coordination, it is possible now to assess its fit with respect to the 

orchestration of dynamic software adaptation and the requirements imposed on its 

coordination role. 
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Automatically adapting a generic distributed application requires the ability to select 

and apply a plan that brings about some intended changes to the run-time state of that 

application. That occurs typically as a reaction to some significant piece of 

information which serves as a trigger for the adaptation. That trigger is typically 

relayed by the diagnostic role, although adaptation could be also triggered willingly 

by some stakeholder of either the target system or the dynamic adaptation platform. 

Regarding the selection of a certain policy, in the simplest cases the trigger may 

assert a fact that already carries with it unequivocally defined consequences; other 

times, a variety of tools - which may or may not need to take in account the current 

state of the target system – could be exploited for the support of the best decision 

among multiple alternatives. For instance, for a typical dynamic adaptation task such 

as the on-the-fly modification of the architectural layout of the target system, formal 

architectural modeling and constraint analysis, coupled with transformation tools, 

such as [53] [54], can be effectively exploited. A discussion on how to incorporate 

generic decision tools in the control loop of externalized dynamic adaptation can be 

found in Section 3.2, where the architecture and design of Workflakes are described. 

When a decision to apply a certain adaptation is taken, a single action will sometimes 

suffice to fulfill it. That is the simplest example of adaptation, and it is the assumption 

of a number of systems, such as Falcon [55], which is devoted to the interactive or 

automated steering of a computer program. When the target is a multi-component 

application, however, the decision will often have to be mapped onto a multiplicity of 

fine-grained interventions, impacting various separate elements of the target. In that 

case, the adaptation needs to be represented as a set of concerted and inter-dependent 
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activities, and some mechanism is needed to take up the coordination role, thus 

ensuring that their side effects on the target system (i.e., the actuation of the 

adaptation) occur in a coherent and consistent way. Those activities may have well-

defined causal relationships, and they may be conditional, or dependent on others; 

besides, during the course of the actuation, certain activities may fail, calling for some 

form of contingency planning; etc. 

In general, the more complex the adaptation and the more sophisticated the actuation 

it calls for on the target, the more involved and well-concerted the corresponding plan 

needs to be; that, in turn, obviously imposes a set of requirements on the coordination 

facility. Those requirements regard a number of aspects: 

• the power of the coordination constructs made available to specify the adaptation 

plan; 

• their level of abstraction, i.e., independence from the peculiarities of the 

application domain and the execution environment; 

• the explicitness of the coordination specifications, which must be easy to reason 

about, maintain, evolve and reuse; 

• to enable automation, those specifications must be executable within a 

computerized environment, thus they have a significant level of formality and 

semantic precision; 

• the execution of the specifications must highly repeatable, yielding results that 

can be verifiably consistent over time, since automation naturally calls for the 

ability to carry out validation and auditing, either at run time or “post mortem”. 
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Workflow technology is one viable choice as the coordination paradigm for dynamic 

adaptation since it significantly complies with the above mentioned requirements:  

• The concept of a process model provides an explicit and abstract way to express 

sophisticated patterns of coordination. To date, no universal consensus exists on 

the set of constructs a process modeling facility should encompass. However, sets 

of process definition constructs (or patterns [154]), powerful enough to produce 

highly detailed specifications of complex coordination logic are supported to a 

sufficient extent by the state of the art of process modeling (for example, see an 

analysis of BPEL4WS [155]). That makes feasible and many times even simple to 

define multi-party, multi-step dynamic adaptation plans as processes. 

• High-level process description languages or formalisms exist, which represent 

valid vehicles to specify, document and reason about dynamic adaptation 

processes. In particular, the top-down nature of most process specifications is apt 

to capture human knowledge about what needs to be done to adapt a system, in 

terms of the sequence of steps that must be followed. 

• Process specifications are easily reusable and maintainable, which enables the 

evolution of the dynamic adaptation process, together with the changing needs of 

a dynamic adaptation application, as well as the controlled target system. 

• Most process representations are sufficiently formal to be executable within an 

apt process enactment engine that automates the execution of coordination. 

• Process enactment software provides out of the box the means for the repeatable 

enforcement of the adaptation process. 
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Furthermore, there are some technical features offered as a commodity by state-

of-the-art process technology, which are convenient in the context of a dynamic 

adaptation platform: 

• State-of-the-art decentralized process engines ensure the scalability of the 

approach, and enable to efficiently pursue the dynamic adaptation of widely 

distributed software applications. 

• Software integration mechanisms are typically offered by process enactment 

engines, in order to facilitate the interaction of processes with a variety of 

software tools and resources that can be used to carry out the various activities 

mandated by the process. Those facilities can be exploited for dynamic adaptation 

to integrate one or more effector technologies. 

Other approaches have the potential to fulfill the coordination role in dynamic 

software adaptation. It is interesting to compare the level of requirements compliance 

and support offered by process / workflow technology, with that of those other 

approaches. In particular alternatives that seem to be popular in the domain of 

dynamic adaptation are based on rule or agent systems. Some discussion on the 

principled similarities and differences between process technology and those two 

approaches is reported below; the analysis of related work in Section 6.4 will expand 

on these issues, by comparing and contrasting concrete examples of works that use 

those approaches. 

Generally speaking, a considerable amount of overlapping and also significant hints 

of convergence can be observed among rule-based, agent-based and process-based 
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technologies. In the context of that convergence, Figure 6 tries to depict the major 

factors of commonality among those software coordination approaches. 
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Figure 6: Inter-relationships between rule-, agent- and process-based coordination approaches. 

For example, rule-based programming is at the heart of several agent coordination 

efforts (see for example [109] [111] [112]), in particular when a high degree of 

autonomy is desired and the coordination model of the agent community leans 

towards dynamic run time negotiation. The basic idea is that a (portion of a) rule base 

can be attached to each agent. The autonomous work of the various agents in the 

community may have – either as a voluntary act or as an implied consequence - side 

effects that are described in the left-hand side of the rules attached to other agents. It 

is sufficient to establish within the agent community a communication substrate that 

propagates the notification of those side effects to come up with decentralized 

coordination means that can be opportunely programmed depending on the logic of 

the agent application at hand. 
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Rule-based programming has also been employed to implement centralized as well as 

decentralized process enactment engines, such as Marvel [108], Merlin [200] and Oz 

[21]. A rule-based process specification takes the concept of process fragmentation to 

the extreme: each process fragment is constituted by one single rule: larger process 

fragments, as well as the overall process, can only emerge bottom-up, via the 

concatenation of appropriately coded sets of rules. 

That approach ensures maximum flexibility and dynamism in constructing open-

ended processes; on the other hand, since rule chains are declarative constructs 

dispersed throughout the rule base, it suffers eminently – as most forms of 

coordination by means of rules - from implicitness. For that reason, it may be quite 

hard to turn a coordination plan that can be conceptualized as a step-by-step 

procedure into a corresponding rule base, in particular when the plan is complex, and 

the rule base needs to scale up and/or evolve over time. Also maintenance and 

understanding may become difficult, whenever a rule must be added to a pre-existing 

process specification, and happens to impact it in some way: for instance, a trigger 

that is matched multiple times, or process fragments that have overlapping side 

effects, or interact with each other. However, even if pure rule-based process 

specifications are perhaps not mainstream in process technology to date, the 

overlapping between the two techniques and their problem and solution spaces 

remains evident, and one would be hard pressed to find a single process or workflow 

engine that does not owe somewhat to rule-based programming. The basic idea of 

rules remains especially evident in the concept of trigger conditions, which are 
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included in process specifications to enable the reactive initiation of process 

enactment. 

One important advantage that processes traditionally defined as task flows have on 

rule-based systems is that they tend to express coordination in a more abstract and 

explicit way. Because of the implicitness of rule-based approaches, coordination logic 

expressed that way is usually harder to specify and maintain with respect to a process 

model. For the same reason, process formalisms are often better-suited for reasoning 

about and communicating the coordination model. Similarly, also carrying out 

auditing is normally easier when process-based, as opposed to rule-based, 

coordination is employed. 

With respect to agent-based systems, Section 2.4 discusses how today’s decentralized 

workflow engines can resolve the issue of distributing task processing 

responsibilities, and how process facilities are suitable and actively being used for 

agent coordination (see for example [25] [26]), supporting not only strict 

organizational structuring, but also various degrees of agent autonomy. Notice also 

that, whereas the full dynamic negotiation capabilities enjoyed by some agent-based 

systems are hard to achieve by means of process-based coordination, those systems 

are likely to suffer form an implicitness similar to the one previously discussed for 

rule-based systems; furthermore, that kind of autonomy may bring about a lack of 

repeatability, which may hinder auditing and validation. 

Based on the considerations above, it can be argued with sufficient confidence that 

process technology has a number of characteristics that make it a prominent option 

for the resolution of software coordination challenges inherent in dynamic adaptation. 
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In Section 3.1, a discussion of how Workflakes tries to take the best advantage of 

those characteristics can be found. 
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3 Description of the solution 

Workflakes is a process-based facility for externalized dynamic adaptation. Its design 

has been driven by a certain number early decisions on how a dynamic adaptation 

process and the corresponding enactment engine should be structured. Together, those 

decisions make up a model for the representation and the enactment of processes 

orchestrating the dynamic adaptation of software systems, with particular attention to 

systems of (legacy) systems, which has been followed and applied in this research. 

This Section begins by presenting that model, continues with a with a description of 

the architecture of the Workflakes engine, then discusses its applicability to a 

spectrum of problems and target systems, and concludes with a critical assessment of 

the model. 

3.1 Model 

Various possible alternatives are available when designing a process enactment 

facility applied to some domain, for example with respect to the kind of process 

representation to be used, or the distribution architecture of the engine, or the 

mechanisms for the integration of external tools, and many others. 

The discussion that follows aims at describing the decisions taken for the Workflakes 

process-based orchestration facility. That model emerged by considering, first of all, 

the coordination role fulfilled by Workflakes within the conceptual architecture 

described in Section 2.2, as well as its inter-relationships with the other dynamic 

adaptation roles: in particular, the diagnostic and actuation roles are the ones with the 

most influence on the orchestration facility. That influence translates into a number of 
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specificities, in both process specification and process enactment, related to the type 

and the structure of processes employed to orchestrate the dynamic adaptation of 

software. 

The coordination role is responsible to bridge the more analytical part of the dynamic 

adaptation control loop, i.e., the monitoring, diagnostic and decision facilities, with its 

actuation part, in charge to carry out the interventions required for the adaptation. It 

achieves that goal by expressing control, and providing means to organize and exert it 

on multiple effectors. Process-based coordination expresses control via the definition 

of specifications in some process definition formalism, and exerts it via an enactment 

engine that executes those specifications. 

As anticipated in Section 2.5, a dynamic adaptation process follows typically a 

reactive behavior, following some output from the diagnostic role. The enactment of 

the process descends from the recognition by the diagnostic role of some significant 

condition that is occurring in the target system. The relationship between the 

diagnostic output and the process enactment, although mediated by the decision role, 

is quite clear: a recognized target condition is an event that may map to a trigger and 

an entry point somewhere in the dynamic adaptation process. The mapping, that is, 

where the entry point is and what portion of that process (i.e., what process fragment) 

is fired and enacted to orchestrate some interventions on the target system following a 

given trigger, is a choice under the responsibility of the decision role. 

The orchestration of some dynamic adaptation is therefore enacted in a reactive 

fashion in response to the trigger, and starting from a single root task, that is, the 

entry point associated to that trigger by some automated decision. The root task is 
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then incrementally expanded into a whole set of steps according to the process 

specifications: that expansion takes the form of a recursive hierarchy of sub-tasks (a 

task decomposition hierarchy), whose unfolding is in charge in the end of completely 

handling the target system condition codified within the trigger event. 

The original trigger must carry enough input information to allow to initiate the 

enactment of the process fragment; therefore, both the control and the data flow of the 

dynamic adaptation process originate from the trigger event, although further 

information that must be employed during the course of the process may either 

already be known to the process, or may be produced or acquired as the process 

fragment unfolds, as a byproduct of the enactment of tasks and the execution of the 

corresponding work units. 

From the discussion about triggering, it follows that a dynamic adaptation process can 

be represented in purely reactive and compositional terms: it is composed of all the 

process fragments that respond to and handle some pre-defined triggers, which in turn 

map back to significant target system conditions. The level of process fragmentation, 

i.e., the size of the fragments, directly influences the level of open-endedness of the 

process. Modeling a dynamic adaptation process in that form provides a simple 

mechanism to close the adaptation loop – specifically the delicate passages between 

diagnostics and actuation - in a fully automated way.  

Such a reactive and compositional approach to the specification of the overall process 

allows to reach a trade-off, according to which the single process fragments are 

defined in a top-down, explicit fashion, while the overall process is composed in a 

bottom-up fashion, from the contributions of the various fragments. The dynamic 
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adaptation process contains a set of declarative descriptions of what conditions are of 

interest in the target system, each coupled with the specifications of some process 

sub-structure, which defines a reaction to that condition. All reactions have a clear 

imperative connotation, since they direct the execution of the adaptation and describe 

how to produce the intended side effects upon the target system via actuation. 

In principle, a fully automated and completely reactive process model excludes the 

possibility of selecting and initiating an adaptation in an interactive way on the part of 

some agent that is located outside the closed control loop of dynamic adaptation. That 

limitation, however, can be easily overcome, by encompassing in the model of a 

dynamic adaptation process facility a provision for an external conduit for injecting 

trigger events into the control loop, either at the monitoring level, or the diagnostic 

level, or both. 

Such a provision is useful for several purposes. When it is used by some human 

operator, for instance, it enables a degree of run-time controllability. The full 

automation of the coordination of dynamic adaptation brings about a great potential 

for substantial savings of management resources, prompter response times, and more 

reliable and consistent interventions. But it also has a downside, with respect to the 

controllability of the adaptation. For instance, the stakeholders of the process and/or 

the target system might decide to divert the course of the process and guide a certain 

adaptation towards a different outcome, or to interrupt it altogether. Providing some 

means for human stakeholders to interact with the process has the important 

consequence that, while humans may still be completely absent from a dynamic 

adaptation process, they can also be present, at least for a matter of opportunity, if not 
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of necessity: they may cover simple and punctual decisional or authorization roles 

provided for by the process, e.g., to confirm or retract potentially critical or drastic 

adaptations. 

Other entities that can take advantage of a means to issue trigger events can be 

software systems that are not properly part of the target system or the dynamic 

adaptation platform, but which might want to proactively initiate some form of 

adaptation in certain specific cases. Those external systems may be related to other 

phases of the life cycle of target system, besides on-the-field-operation: a 

development tool, for example, like a configuration manager, might want to trigger an 

adaptation process that upgrades the target system, following the release of a new 

software version (as in Software Dock [36]). 

Additional trigger events can be also issued and injected in the same way into the 

closed control loop of dynamic adaptation as a consequence of side effects included 

in the process enactment: that can happen either directly (i.e., the side effect by some 

effector purposely equates to issuing a new trigger), or indirectly (i.e., the effector 

causes some modifications in the target systems, which are captured by the 

monitoring role and interpreted as significant new conditions by the diagnostic role, 

causing the production of a new trigger event). That way, “derivative” proactive 

behavior can be made part of a process that has primarily a reactive stance.  

The interplay between the diagnostic, decision and coordination role, together with 

the eminently reactive nature of the dynamic adaptation process, resembles the Event-

Condition-Action paradigm (see Section 2.3). In fact, the decision role mediates – by 

properly evaluating conditions predicating over the state of the target system - 
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between the diagnostic events and the enactment of adaptation provided by the 

coordination role. 

That parallel is valid to some degree. In particular, the significance of the decision 

role is best appreciated by considering how, for the dynamic adaptation of complex 

target systems, a simple Event-Action metaphor would be too simplistic and 

mechanic: it would equate to have completely determined and fixed decisions for 

each possible occurrence of some diagnostic event, irrespectively of any variability in 

the operational context of the target system. That is unlikely to be realistic and 

adequate in field conditions: decision points need many times to incorporate complex 

and subtle considerations about the current state of the system and its surrounding 

environment That constitutes one of the major motivations to include an explicit role 

for automated decision facilities in the dynamic adaptation of software systems. 

The parallel between Conditions in ECA rule systems construct and the decision role 

in dynamic adaptation is furthered by the observation that the complexity of the 

Condition predicate, as well as the means used to evaluate it, is not constrained in any 

way in the ECA paradigm: any kind of logic can be accommodated. Such a model 

remains conceptually agnostic with respect to the decision-making approach and 

therefore enables to leverage as needed any system that can provide adequate support 

for the automated decision-making. The decision role in dynamic adaptation is, 

conceptually, similarly generic and unconstrained. 

A difference between the model proposed and ECA rules exists, and is very 

important. A single process trigger does not simply fire an individual rule, but causes 

the initiation of a whole sub-process of arbitrary size, duration and complexity, which 
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may be completely pre-defined in a top-down fashion. In rule-based systems that 

follow the ECA paradigm, instead, right-hand side actions are atomic and typically 

short-termed Therefore, to obtain the same effect in a rule-based engine, mechanisms 

that compute and execute continuation from the rule originally fired are needed, in 

order to construct chains of rules bottom-up. 

While the inter-relationship between the diagnostic and the coordination role defines 

the modality for initiating the orchestration process, that between the coordination 

and the actuation role regards the operational semantics to be given to enacted 

process steps. Let us consider a task decomposition hierarchy as it unfolds from its 

root: it is made by some inner nodes, i.e., tasks that are further decomposed, and by 

some leaf tasks. Leaf tasks represent atomic units of coordination that cannot be 

further decomposed; they do not carry in themselves any additional coordination 

semantics, so they can naturally represent the units of work that are meant to carry 

side effects onto the target system. As such, they can be the loci for the operational 

semantics of dynamic adaptation: for example, the definition of leaf tasks can be used 

to assign certain effectors to them, their input can be used as the input to the 

effectors’ computations, and any assigned resources as resources to be used by the 

effectors for their work. Similarly, the results of the effectors’ execution can be 

coupled with the state and the outcome of the corresponding leaf task, and as such, 

they can be relayed back up the task hierarchy. Leaf tasks can effectively connect the 

process enactment environment to the “real world”, i.e., the computing environment 

where the target system runs and is being adapted. 
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For that connection to be effective, there needs to be a tight conceptual as well as 

operational integration between the enactment of leaf tasks and the effectors they use. 

The model adopted in this work considers effectors as necessary resources that are 

explicitly indicated in the definition of leaf tasks; since leaf tasks cannot be enacted 

and do their work without acquiring and using those resources, effectors become first-

class entities in the process specifications. Furthermore, the architecture of the 

dynamic adaptation process engine includes an actuation API that allows leaf tasks – 

as they are enacted - to interact with effectors (independently of how the latter are 

implemented) by means of a few generic primitives. That API will be further 

discussed in Section 3.2. 

Therefore, in the adopted model the inner task nodes in the process decomposition 

hierarchy and their dependencies express the logic according to which leaf tasks are 

planned and enacted in a concerted way. Leaf task, in turn, oversee the practical units 

of adaptation work by invoking and controlling their associated effectors through the 

actuation API. 

Another point of interest in processes for dynamic software adaptation is the 

significance of constructs and techniques for handling exceptional courses of action. 

In any process it is important to account for exceptions and errors that may occur 

during the enactment of the process, and to be able to express how the control flow 

must change as a consequence. That becomes paramount in processes that are fully 

automated, and whose work aims at forcing modifications onto a complex running 

piece of software. At any point in the process, the actuation by an effector can fail, or 
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produce wrong results, or even have undesired effects on the target component; 

therefore, clear and efficient support for those situations is especially necessary. 

Several process languages these days include that kind of support, in the form of 

exception handling [201], such as for example, Little-JIL [19] and BPEL4WS [95]. 

Exception handling enables to specify certain branches in the workflow that are 

executed whenever specific conditions (the exceptions) occur in the internal state 

maintained by the engine during some phase of process enactment: in a process 

decomposition hierarchy, exceptions force a jump out of the current sub-process and 

resume the process enactment on an alternative part of the hierarchy, which behaves 

as an exception handler. At the end of the unfolding of the exception handler, existing 

systems adopt various options with respect to the enactment of the original sub-

process: for example, it can be considered finished, it can resume, it can be re-started, 

etc, depending on the semantics of the exception mechanism. 

It is important to consider what an exception handler sub-process should entail in the 

case of dynamic adaptation. In many applications of workflow technology side effects 

tend to be confined to the manipulation of data (internally to the process state store, or 

in a database, or in a document repository of some sort, etc.). In those cases, 

traditional transactional mechanisms with commit/rollback capabilities for that data 

may offer sufficient remedies in the face of some exceptional situation. 

In dynamic adaptation, however, when an adaptation of the target system requires 

multiple interventions to be completed, possibly on a variety of elements, the raising 

of an exception may occur in the middle of those interventions. That is a situation 

akin to an error occurring in the middle of some transaction; however, the basic 
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rollback of an atomic transaction is most of the times insufficient, since some of the 

side effects that may have been caused by a dynamic adaptation process fragment in 

the “real world” of the target computing environment (such as the shutdown of a 

target component) could not be simply rolled back anymore. Instead, the exception 

handler must be designed to compensate the earlier invalid adaptation, and to bring 

the target system and the process into a state that is consistent and enables further 

operation of both. Compensation may have the goal to either undo a previous side 

effect, or to bring forth the system to a new consistent state that is different from 

before, but stable and acceptable. 

Designing compensation sub-processes may be particularly involved in the case of 

dynamic adaptation. Firstly, the set of possible errors that can arise from the 

interaction between effectors and target system components can be quite large. Also, 

some compensations may need to carry out a major re-hauling of the target system at 

large, even in the face of a local induced fault on a single component, if that 

component is somehow critical. Finally, when some adaptation requires multiple 

steps to be completed to bring the target system into some desired state, and some 

step fails in such a way that the multi-step adaptation cannot go further, the exception 

handling mechanism may need to be able to compensate also previous steps, even if 

they were completed successfully. 

Exception handlers included in the specification of a process – by their nature – 

typically are meant to deal with internal contingencies. Internal contingencies are 

those whose possibility to occur in the target system as it is adapted according to plan 

is known, and which should be explicitly provided for in the design of the adaptation 
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process. A dynamic adaptation system is also particularly exposed to external 

contingencies. Those can arise because of the level of uncertainty inherent to software 

execution within a distributed computing environment: glitches, faults or other 

problems can always occur on any of the software entities involved while the process 

is in execution. External contingencies may correspond either to unforeseeable target 

system states, or to faults within any part of the dynamic adaptation loop itself, e.g., a 

communication failure between effectors and the target system components to be 

adapted. They can occur either as an unforeseen consequence of the adaptation 

process, or because of some independent circumstances. To ensure robustness against 

external - in addition to internal - contingencies, the dynamic adaptation process 

should provide some generic exception handling branches, representing default 

courses of action to be taken when “all else fails” and the adaptation process needs to 

reset to some sort of a “safe state”. 

All the issues discussed so far as characteristics of dynamic adaptation processes can 

be succinctly summarized as follows: 

• the process is fully automated and reactive, composed of multiple process 

fragments; 

• a fragment is a pre-defined sub-process, fired by a corresponding trigger; 

• a process fragment unfolds from a root task as a task decomposition hierarchy; 

• a means to interact with the process from the outside of the control loop is 

provided in the form of a conduit for issuing process triggers; 

• inner nodes in the task hierarchy are coordination constructs; leaf nodes represent 

actual units of work; 
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• interactions with effectors occur during the course of leaf tasks; 

• process includes exception handling for internal as well as external contingencies; 

• exception handler sub-processes must encompass forms of compensation. 

These characteristics have guided the architectural design of the Workflakes engine, 

which is discussed below. 

3.2 Architecture 

To introduce the architecture of the Workflakes process-based coordination facility it 

may be useful to first briefly contextualize it within the “bigger picture” of the KX 

platform as a whole (for an exhaustive presentation of the overall KX structure and 

implementation, refer to [122]). 

KX covers the entire reference architecture shown in  end-to-end. To 

implement its various layers, KX uses sensors, gauges, controllers and effectors 

components, which are physically distributed. 

Figure 3

In KX, sensors, gauges and controllers communicate solely via publish/subscribe 

event notification, using content-based asynchronous messaging middleware. Notice 

that the Sensor and Gauge buses of the conceptual architecture are unified in KX into 

a single event notification facility: initially, we chose Siena (Scalable Internet Event 

Notification Architecture) [156], but later added support for alternatives (e.g., Elvin 

[157]).  

 



75 

Figure 7 shows how KX building blocks are linked to each other via the event 

notification middleware, at a high level of abstraction, and disregarding distribution 

aspects4. Besides Workflakes, the other major elements are: 

• The Event Packager, which acts as an event translation service that pre-processes 

incoming sensor data, since the various sensor technologies do not necessarily 

output a unified event format that can be consumed by our gauges. The Event 

Packager also timestamps sensor events according to a globally synchronized 

clock, and acts as a “flight recorder” to persistently log in a database the incoming 

events from the sensors, for later replay or data mining. 

• The Event Distiller, which is the main gauge component. It performs 

sophisticated, possibly cross-stream temporal event pattern analysis and 

correlation across continuous data streams from multiple sensors, to capture and 

diagnose target system conditions of interest for the dynamic adaptation 

application at hand. The Event Distiller is dynamically configured with 

correlation rules defining the event patterns of interest: new rules can be added 

and previous rules can be replaced or removed on the fly. 

The Figure also shows an interaction between Workflakes and effectors that occurs 

outside the bus: for the rather tightly coupled interactions between controllers and the 

effectors they coordinate, KX advocates point-to-point communication for those 

interactions, in the form best suited with respect to the technological underpinnings of 

the effectors employed. 

                                                 
4 When KX is instantiated on the field, multiple Event Packagers, Event Distillers and Workflakes task 
processors can be deployed and configured as needed. 
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Figure 7: KX architecture. 

By leveraging event notification middleware, KX components can be easily 

rearranged, with multiple instances of KX Event Processors, Event Distillers and 

Workflakes controllers introduced as needed to address scalability requirements. 

Furthermore, the actual components that implement sensors, gauges and controllers 

remain well separated, providing KX with enhanced flexibility: depending on the 

problem domain, a different set of components may be integrated, and some may be 

replaced with different, problem-specific alternatives. For example, KX does not 

formally embrace and include any particular technology for monitoring, since sensors 

are necessarily highly target-system specific, and thus can vary widely. Among the 

technologies that have been integrated in KX trials and applications by bridging them 

to the event-based Sensor Bus there are AIDE [63], library wrappers [65], JMX-based 
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monitors [129], as well as home-brewed, target-specific sensors directly attached to 

the event middleware. 

The strategy of keeping strongly detached the components that fulfill the various 

dynamic adaptation roles, and consequently also their respective concerns, applies of 

course also to controllers, and hence – within KX – to Workflakes. Thanks to that 

strategy, besides the conceptual inter-relationships already highlighted in Section 3.1, 

which originate form the conceptual architecture, there are no hard dependencies 

imposed upon the design of Workfalkes by any design or implementation decisions 

peculiar to the KX reification of that reference architecture. In fact, in some case 

studies, as reported in Section 5.2, process-based orchestration by Workflakes has 

been coupled with monitoring and diagnostic means different from those of KX. 

Furthermore, the design also enables experimenting with Workflakes as a stand-alone 

software coordinator, even outside the dynamic adaptation context altogether. 

In the remainder of this Section, the design of a controller facility like Workflakes is 

presented. It encompasses - but keeps logically separated - the decision and 

coordination roles of dynamic adaptation; it also acknowledges the strong mutual 

dependency between the orchestration engine and the effectors it coordinates, by 

providing a tight interface between them with abstract control and reporting 

primitives, which differs from the loosely coupled interface connecting the other 

platform elements. 

Design of a process-based controller 

The core of a process-based controller, such as Workflakes, is of course its enactment 

engine. Engines can be centralized, or de-centralized, i.e., made up of a multiplicity 
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of task processors that are interconnected via some distributed communication and 

state sharing means. For dynamic adaptation, a de-centralized architecture is the 

better choice, because it allows to locate the task processors together with, or close to, 

target systems substructures, which can be themselves widely distributed. It also 

enables to delegate process fragments that pertain to those substructures to the most 

convenient task processor for “local” execution. Decentralization enhances the 

performance, robustness, and scalability of the enactment engine, and consequently of 

the dynamic adaptation platform as a whole. 

Decentralization of the enactment architecture implies the presence of mechanisms 

for distributed data access and management across the task processors, including: 

• Distribution of the specifications of the process: in the case of dynamic 

adaptation, the various process fragments.  

• Distribution of the artifacts produced and accessed by the process: in the case 

of dynamic adaptation, information about the target system and its state. 

• Distribution of the process resources: in the case of dynamic adaptation, the 

effectors to be employed. 

• Distribution of the run-time process state; recall that the overall process state 

encompasses the state of each of its constituent tasks, the dependencies 

between tasks, and the data and the resources described within the process. 

Since – as noted earlier on in Section 2.4 - a number of state-of-the-art process 

engines make available the necessary mechanisms for de-centralized enactment, in 

the remainder those aspects are assumed and the focus is placed on the architecture of 

a task processor in isolation. 
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Figure 8: Abstract view of a task processor. 

To introduce the discussion, Figure 8 shows how a generic task processor can be 

organized – independently from the specific process engine adopted, or the kind of 

coordination problem at hand. A task processor typically revolves around a process 

data manager, which is in charge to manipulate and maintain in a consistent fashion 

suitable data structures that capture all the information that is relevant to the 

enactment of the orchestration process. Such data includes an operational 

representation of the process specifications loaded within the engine, the current 

process state, any input or output data exchanged with external software entities, 

representations of or pointers to process resources and artifacts, and possibly other 

support or specialized information. The process data manager – in a de-centralized 

enactment architecture – is also in charge to interact, exchange information and 
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synchronize its internal state with the other remote task processors that take part to 

the same decentralized enactment engine. 

The process data manager regulates the access to process enactment data on the part 

of other elements in the task processor. Those other elements are modules that either 

support process enactment and need to variously interact with the process data 

maintained by the manager, or interface the task processor with internal external 

components and tools that have some role in the process. 

Strictly connected to process interpretation are the process executors in the task 

processor. They are intrinsic elements of the process enactment engine, which 

provide the machinery that ensure the correct execution of a process loaded in the 

data structures of the process data manager, according to the operational semantics of 

its specifications. Those facilities take the form of one or more computational 

modules, devoted to interpret the loaded process representation and to incrementally 

modify its state by scheduling, initiating and overseeing the enactment of process 

steps. 

Process executors may need at times in the course of the process to employ external 

tools and applications to complete some work units. To that end, an integration 

facility can be used, which enables and abstracts those interactions. Integration 

facilities are usually dependent on the application domain and the tools they need to 

male available to process executors. 

The task processor also needs to be equipped with data conduits, because a quantity 

of input and output data may need to be exchanged with external programs. Input data 

must be relayed and converted into adequate formats suited to be used within the 
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process engine for its own purposes, in particular for updating the information 

maintained in the process data manager. Also data generated as a by-product of the 

process execution may need to be output and reported to external entities, possibly 

after suitable re-formatting. The data conduits therefore need to operate in both 

directions; they also may either work in batch mode (i.e., reading/writing data from/to 

permanent or semi-permanent storage such as a database or the file system), or in 

streaming mode (directly communicating with other executing applications, which 

produce/consume immediately the exchanged data). 

It is clear how in the context of an-application-to-application coordination process, 

such as that of dynamic adaptation, the importance of data conduits becomes very 

significant. For example, information captured in models of the target system, as well 

as any update of its state, may be conveyed via these data exchange modules. A data 

conduit constitutes also a valid way to implement the communication channel 

between the diagnostic facilities and the controller, relaying process triggers to it. 

Finally, data conduits can be used to transfer information to and from the part of the 

system that is in charge of actuation, and of interfacing with effectors. 
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Figure 9: Design of a process-based controller. 

Coming to the role of a task processor in the context of dynamic software adaptation, 

the diagram of Figure 9 highlights the various interfaces that enable the functional 

integration of a task processor embedded in a controller within the conceptual 

architecture previously described. To that end, three major interfaces can be 

recognized, dedicated to process loading, decision making, and effectors control. 

The process loader is in charge to acquire some process specification and to load it 

into in an appropriate operational form that is executable within the task processor. 

Process loading can be performed both in “push” and in “pull” mode. The push mode 

is implemented by an entity (a user, or some software) which explicitly requests the 

process loader module to load some determined process specifications. The pull mode 

instead is implemented by the task processor itself, which is able to react to some 
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event (for example, a process trigger), asking the loader to search for a determined 

process specification, fetch it and load it. 

Irrespective of the means used to load the process specifications, which are not 

constrained by this architecture, the logic adopted is completely incorporated within 

the process loader. In both cases, the loader can make use of another component, 

which serves as a process repository. In practice, it implements a database that keeps 

in store a collection of process specifications (describing process fragments) that 

potentially need to be made available to the various task processors. No assumption 

or limitation on the nature and the format of the stored specifications need to be 

adopted at this stage. Also the way in which the process repository is populated may 

widely vary: for example, the repository might enable dynamic addition of new 

process specifications, or also the update of existing specifications with new versions. 

Figure 9 also depicts the juxtaposition of the decision facilities and the task processor 

within the controller. An internal decision-making module may be put in charge to 

make a first evaluation of incoming diagnostic events, which can lead to the selection 

– whenever necessary – of some process fragment to be enacted. The simplest way to 

implement such an internal decision module can be either via pattern matching or 

query mechanisms, which relate the format and the content of the incoming events to 

some process specifications already present in the task processor, or contained in the 

process repository and ready to be loaded via the process loader.  

For more complex decision scenarios, however, it must be also possible to use an 

external decision-making component with substantial computational capabilities. 

Using an external decision facility allows to isolate the decision logic, which can be 
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at times quite involved, and delegate it to an external system. It is thereby possible to 

separate more clearly decision aspects (for instance, which process fragment – if any 

– is the best suited to achieve a certain adaptation under given conditions) from co-

ordination aspects (i.e., how to enact the selected process according to its 

specifications). 

Such a decision facility may be a third-party or otherwise stand-alone component. To 

oversee the decision, that component must be enabled to access the original 

diagnostic event, as well as any portion of accumulated knowledge about the current 

state of the target system (captured by the gauges, and based upon the behavioral 

model) and of the process, as maintained in the task processor. In that case, the 

internal decision module serves as a connector between the task processor and the 

separate decision system. 

Directing actuation 

Coming to the interface of the task processor with the actuation role, which is 

arguably the feature that most strongly characterize a process engine devoted to 

dynamic software adaptation,  shows an Application Programming Interface 

(API) and a connection with an actuation sub-system. That relationship is displayed 

in greater detailed in Figure 10. 

Figure 9

The actuation sub-system is in charge of instantiating, managing and guiding 

effectors destined to impact the target application, as required by the enactment of the 

dynamic adaptation process. It is made of a few essential components. 
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Figure 10: Interfacing the task processor and the actuation role. 

The first component is an effectors catalog. In practice, it implements a repository 

that keeps in store a collection of information about code artifacts that represent the 

effectors that may be needed for the dynamic adaptation application at hand. The 

information stored in that repository might differ with respect to aspects such as the 

effectors’ purposes, their functionality, their methods, their technological 

underpinnings, and more. For example, multiple effectors may have the same purpose 

and functionality (i.e., their execution aims at producing equivalent side effects from 

the point of view of dynamic adaptation), but may achieve it in different ways, and 

may be implemented or compatible with different technologies. In principle, the 
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effectors catalog must include some mechanism (such as associated meta-data) for the 

purpose of describing, discriminating and selecting suitable effectors for each task of 

the dynamic adaptation process, and for the computing environment to be effected. In 

some cases, also the executable code of the effectors – or some pointer useful to 

retrieve such code – can be included within the repository; in other cases, for 

instances when effectors come already embedded with the target components, only 

the runtime handles to those already instantiated effectors is present in the catalog.  

Notwithstanding the abovementioned possible heterogeneity of effectors, a significant 

amount of standardization in the interactions between the process engine and the 

effectors it coordinates can be achieved. For that, a high-level, conceptual interface 

can be employed, which also helps in keeping cleanly decoupled the coordinator from 

the subject of coordination across technologies and application contexts. Such an 

interface is relatively simple at a high level of abstraction, since it provides only a few 

primitives, which constitute a conceptual effectors or actuation API: 

• Look Up: the ability of querying the effectors catalog and obtain in response what 

code artifacts in the catalog correspond to suitable effectors. 

• Recruit: the ability to summon and obtain control of some effectors, in order to 

exploit them for the purpose of the adaptation at hand. 

• Instantiate: A specialization of the Recruit primitive, which implies the ability of 

creating new instances of effectors within the runtime environment of the 

controller or the target system, for the purpose of their execution. Recruit applies 

primarily to pre-existing effectors, and Instantiate implements the same semantics 

on new effectors’ instances. 
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• Configure: customize effectors to the specific conditions of the adaptation they 

are about to carry out, by means of parameter-passing, variable setting and other 

similar means. 

• Activate: launch effectors’ execution on top of target system components that 

need to be impacted. That may involve the preliminary deployment of the 

effectors. 

• Relay: make available the means for effectors to report back to the task processor 

the results of their work on top of target system components. Since the effectors’ 

work can have long-duration and can occur asynchronously with respect to 

activation, it is not usually convenient to model the passing of results in a 

request/response fashion, like that of Remote Procedure Calls (RPCs). It may be 

more appropriate and general to equip the effectors in use with a data conduit, 

which the effectors can employ whenever they need to relay data back to the task 

processor. 

With the exception of Look Up, all primitives tend to be strongly dependent in their 

implementation on the technologies employed to develop the effectors, with their 

idiosyncratic properties. In the Figure, the conceptual, high-level API is exposed as a 

whole towards the task processor, thus providing it with a single, uniform manner to 

interact with the effectors and command them. That API aims at effectively hiding 

from the task processor any idiosyncrasy linked to the possible specific characteristics 

of different effectors, and at interacting with said effectors in a transparent fashion. 

The counterpart of that conceptual interface at the implementation level can be 

constructed effectively by distinguishing among three different slots, which group 
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together subsets of the API primitives, and are differently implemented. The three 

slots, which are shown in , are the following: Figure 10

• a slot for the Lookup primitive, whose implementation does not depend from the 

nature of effectors and is therefore always available; 

• a slot that groups the Instantiate, Recruit, Configure and Activate primitives, 

whose implementation is technology-dependent. To accommodate multiple 

implementations, this slot can be filled by adopting a plugin mechanism. Multiple 

plugins may exist, developed according to the various available effectors 

technologies, and can be loaded into the slot dynamically. A plugin is selected 

and used every time a certain effector is looked up, to allow the task processor to 

interact with the effector respecting the semantics of the primitives in the slot, and 

at the same time in compliance with the technology of the effector; 

• a slot for the Relay primitive, which is implemented also by means of technology-

dependent plugins. The plugin for this slot is selected, and passed to the 

instantiated effector as part of its Configure stage. It provides to the effector a 

communication channel back to the task processor (for instance, a callback 

mechanism) to support the semantics of the Relay primitive in compliance with 

the technology of the effector. 

An important result of this architectural design is that the interaction between the 

coordination and the actuation roles is kept simple, independently from 

implementation concerns, because of the limited number and the high level of 

abstraction of the primitives in the effectors API. 
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3.3 Applicability and scope 

The spectrum of issues, problems and applications that can be addressed in principle 

with dynamic adaptation techniques is rather vast. It is therefore important to define 

the likely boundaries of applicability of the proposed approach, considering its most 

distinguishing traits, that is, the use of process technology and the externalized stance 

with respect to the target system. Therefore, although process-based coordination can 

be employed also in internalized dynamic adaptation solutions, the discussion in the 

remainder of this Section focuses on its use within an externalized platform, and 

addresses two issues: what kind of dynamic adaptation problems are well or badly 

suited for process-based coordination; and what kinds of target systems are feasible or 

unfeasible. 

Applicability scenarios 

Let us consider the four declared major areas of application for autonomic computing 

and similar initiatives, i.e., self-configuration, self-optimization, self-healing and self-

protection [32]: the application of process technology to the coordination role of 

dynamic adaptation enables a variety of scenarios which apply, at a minimum, to the 

problems of automating the configuration, healing and optimization of the target 

system, and can extend also to partially cover its protection. 

With respect to the target system configuration, a dynamic adaptation process may be 

used first of all to coordinate and automate the deployment of a distributed software 

application onto an available and suitable computing infrastructure. Deployment is an 

ensemble of possibly complex but mostly repetitive technical procedures, which are 

sufficiently self-contained and with a limited set of states and outcomes; therefore, its 
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automation is feasible, and likely to bring about significant advantages, especially 

when it is repeated on computing environments of the same kind. In fact, numerous 

commercial solutions exist, which cover some parts of the automated deployment 

spectrum, such as installation [33], distribution [34], or update [35]; they are 

increasingly common, and today a large part of commercial software packages, 

including operating systems distributions, come with their own automated installer 

and updater. Most of those solutions, however, operate on single software packages, 

either in isolation on a single host, or by volume on a number of similar host 

machines. The dynamic adaptation focus is instead on comprehensive, customized 

and orchestrated deployment of multi-component applications on the part of a 

general-purpose automated deployment facility, similarly to systems like the Software 

Dock [36]; in that context, specialized installation, distribution, updating, etc. utilities 

like the ones cited above can take the role of effectors, which can be employed under 

the coordination of the generic deployment facility. 

A distinction can be made between the initial application deployment and later re-

deployments: the initial deployment generally follows an explicit decision by some 

system administrator who specifies when, where and how to dispatch and start up all 

the application components – possibly with the support of appropriate configuration 

tools. By enabling the insertion of specific triggers from an external conduit in the 

control loop of a dynamic adaptation facility, it is possible to unify the initial 

proactive system deployment and any subsequent re-deployments (partial or 

complete), which may occur either automatically as a reaction to some runtime 

condition in the deployed target system, or again following a directive coming from 
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an external entity, such as an administration cosole. A process that reconciles all 

deployment cases can therefore be conceived, which re-uses the same overall logic, 

and the same knowledge to describe and predicate upon its resources (the components 

and packages of the software to be deployed, the computing environment at hand with 

its topology, its characteristics and its state, the various deployment facilities that may 

serve as effectors for this specific kind of adaptation, etc.). 

Automated (re-)deployment addresses a number of configuration issues, by enabling 

the on-the-fly addition or replacement of relatively coarse-grained features, 

components and services in a system: an example is the automation of the various 

administration concerns related to a system-wide upgrade without service downtime 

(also known sometimes as staging) An example of a staging process, in the context of 

a Workflakes experiment, is reported in Section 5.1. 

In the course of deployment, another configuration issue that can emerge is the 

elimination of any potential or detected conflicts with applications previously 

deployed on the same distribution architecture. Another form of finer-grained 

configuration that is naturally intrinsic to deployment, but also occurs in many other 

adaptation contexts, is the application of appropriate systems settings and parameters 

to single components, or to subsystems, or to the target system as a whole. The 

dynamic adjustment of such settings to reflect the initial state of the computing 

environment and of the target system at deployment time, as well as any subsequent 

variations thereof, can be resolved with a reactive process that is fed with triggers 

indicating that variations are needed.  
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Composite processes that variously combine (re-)deployment and parameters setting 

have the potential to cover the vast majority of the dynamic configuration needs of 

the target system. As a special case, it is worthy to consider the configuration - or re-

configuration - of the architectural layout of a distributed application, in terms of its 

components and connectors. Process tasks enacting deployment strategies can take 

care of the delivery and the launch of the various components on certain hosts, while 

other tasks provide those components with the appropriate discovery, location and 

networking settings, which allow components to find and connect to each other, thus 

effectively putting in place the connectors of the architecture, which enable 

components to interact. Those deployment and parameter-setting tasks need to be 

appropriately interspersed, in order to build or modify the system architecture in an 

orderly way, and the process can be fragmented in such a way to take care of each 

recognizable architectural sub-structure autonomously. An example of architectural 

re-configuration supported by Workflakes is reported in Section 5.3. 

With respect to target system healing, one can recognize two major categories of 

adaptation: fault recovery and fault avoidance. Fault recovery is fully reactive by 

nature; assuming that diagnostics can correctly indicate the kind of fault occurred, the 

main issue in fault recovery is related to the strategy chosen to fix or survive (i.e., 

overcome) that fault, while minimizing adverse effects on functionality and 

performance. That choice largely depends also on where the fault has occurred among 

the many layers of the stack that underlies the implementation of a distributed 

software system. Recovery from hardware, system or network failures is clearly quite 

different from, say, application level faults: in the former case it is more likely that 
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the recovery put in place with dynamic adaptation cannot actually fix the fault, but 

rather overcome it by changing the configuration of the system in an appropriate way. 

Limiting the discussion – for the sake of brevity – to the latter category, some of the 

possible options are the isolation of faulty components or subsystems, their shutdown 

and/or replacement, or more granular repairs that impact inner modules and settings 

of the target components. All of those remedies may require the re-configuration of 

target system elements and also some software re-deployment. It must be noted that 

the enactment of fault-recovery adaptations may incur in a number of unforeseen 

complications, due to the possibly unreliable state of the target system in presence of 

a fault, and also because the diagnostic role may have uncovered the fault without 

necessarily discovering its reason. Thus, alternative courses, re-planning, 

backtracking, and other similar devices for managing those contingencies are often 

prominent in processes that orchestrate fault recovery, increasing their degree of 

complexity. 

Fault avoidance requires possibly sophisticated predictive capabilities by the 

diagnostic role of dynamic adaptation, which must be able to infer the probable 

occurrence of a fault in the future, on the basis of the current snapshot of the state of 

the target system and possibly its history. Since fault avoidance takes a proactive 

stance with respect to fault management, in an attempt to preserve target stability and 

improve quality factors such as availability and reliability. One difference with 

respect to fault recovery processes is possibly that a constrained time window for 

effecting the adaptation might need to be respected. Also, the activities in a process 

aiming at the prevention of a fault are likely to lean more towards adjusting running 
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components, their state and their operation parameters to skirt trouble and approach 

full efficiency, rather than repairing them, which often implies taking them off, since 

restarting a component is at times the surest way to fix it.  

With respect to target system optimization, the focus is on the management of the 

resources employed by the distributed applications as a whole, and by each of its 

components. Optimization processes try to automatically and dynamically tune those 

resources, a goal that translates in practice into a continuous exercise in balancing 

trade-offs. First of all, it is necessary to strike the right balance between maximized 

performance for end users and minimized load for the computing and communication 

infrastructure, under the ever changing usage conditions typical of many distributed 

systems and services. On top of that, the allocation of certain resources must be 

balanced among the target system components that compete for them at any given 

time. Notice that those two different trade-offs are not orthogonal, and may interfere 

with each another. 

Optimization processes may be the most granular with respect to the adaptation they 

pursue, as well as the ones that demand the fastest turnaround time between the 

reception of a trigger and the fulfillment of the corresponding actuation. Orchestrating 

some target system optimization may therefore require in certain cases specific logic 

and activities, but many times may also re-use concepts and practices that are typical 

of healing and configuration. For example, an optimization process aiming at the 

dynamic load balancing of user requests for some service may need to deploy new 

instances of the service software, re-configure the settings of the load balancing 

facilities to take advantage of those new instances, and divert requests in excess from 
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overloaded servers before they might crash. The net overall result is an optimization 

of incoming traffic and requests, but that effect is in fact achieved by a combination 

of re-configuration and fault avoidance techniques. An example of such an 

optimization, supported in a Workflakes experiment, can be found in Section 5.1. 
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Figure 11: Dynamic adaptation scenarios. 

Figure 11, shows the relationships between the various dynamic adaptation scenarios 

discussed above, and how solutions for those various scenarios are likely to build 

upon one another.  

As for target system protection, in a number of cases it can be equated to a form of 

healing. For example, securing the target system against some attack is not 

conceptually different from preventing a fault. Once again, it is only a matter of 

semantics: in the latter case the cause of the problem is incidental, while in the former 

case it derives from a malicious intent. Therefore, the same logic guiding fault 

avoidance processes may apply for example to the rejection of a Denial-Of-Service 

attack. Recovering system components infected by a virus, and getting rid of the 

infection can instead be approached at times as a fault recovery problem, with the 
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mandatory extra requirement that system functionality should be preserved during 

and following the adaptation that eliminates the virus. 

In a variety of situations in which protection problems can be handled like healing 

issues, dynamic adaptation techniques similar to the ones described in this work can 

apply: among other examples, SABER [159] and Willow [31] approach the problem 

of the survivability of software systems and services in those terms. 

A major difference between system healing and system protection ensues when, to 

ensure protection, it is necessary to take measures that have an impact externally to 

the target system proper. For example, to protect some service offered by some 

system within a certain organization, it may be necessary to modify the access rights, 

trust policies, network topology, or other relevant elements at the level of the whole 

IT infrastrucuture under attack, or at least of some substructure thereof. Entities that 

are affected by those kinds of measures do not belong to the target computing 

environment, unless it is defined in an extremely broad sense; that contrasts both 

conceptually and practically with the way the control loop of dynamic adaptation is 

conceived, with its endpoints well rooted in the target system (see Figure 2). In 

particular, that Figure assumes that the actuation capabilities needed for dynamic 

adaptation are all exposed in some way by elements of the target system; that 

assumption in turn provides a well-defined context for both the coordination and 

actuation roles. In order to undertake adaptations that affect the organizational 

computing infrastructure at large, that assumption must be broken, in favor of a much 

broader and all-encompassing vision in which a number of dynamic adaptation roles 

must work across the whole organization and all of its information systems. 
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That is a different, challenging endeavor, which goes beyond the issue of providing a 

technically suitable software infrastructure, but also needs to embrace and resolve a 

number of organization-wide concerns. In other words, it entails moving from level 4 

to level 5 in the autonomic capability model previously introduced in Section 2.2: 

level 5 requires, besides the full automation of adaptation of level 4, awareness, 

support and integration of organizational and business issues and policies within the 

autonomic facilities. That represents a path along which the research presented here 

can evolve in the future: one line of investigation according to which such integration 

could proceed is the federation of business processes with dynamic adaptation 

processes, which remains however out of the scope of this work. 

Target system feasibility criteria 

While the generic concept of dynamic adaptation applies in principle to about any 

distributed software system, a number of considerations can be made on the kinds of 

target systems that are viable for the approach proposed in this work. 

A first issue that impacts the suitability of an externalized coordination facility, such 

as a process-based one, regards those systems and components that come with some 

built-in adaptation logic of their own. If some internalized dynamic adaptation 

provisions – with its own decision and control policies - are active in some 

components of the target system, those policies may conflict with a global adaptation 

plan pursued by an externalized platform. That makes for a case of “process-in-the-

tool syndrome” [37], that is, the interference in the enactment of a coordination plan 

on the part of the very subjects of coordination.  
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There are ways to overcome the process-in-the-tool syndrome and achieve a gracious 

co-existence of externalized adaptation orchestration with internalized adaptation 

provisions. For example, when some potentially disruptive internal adaptation logic is 

present, documented and active, it is many times possible to design the orchestration 

process to incorporate it in its own end-to-end plan. That can happen, for instance, 

when the external coordinator is empowered to activate and de-activate the internal 

adaptation mechanism at will, by issuing from some specific process step an effector 

that has that side effect. That way the overall process can at certain junctures accept 

to delegate certain forms of adaptations to the internalized features, but maintains a 

control on when allowing delegation. If the local, internalized adaptation could 

interfere with a certain more global adaptation plan , the coordinator could switch off 

the internalized mechanism and enforce alternative ways to resolve the same issue. 

Another possible issue regards the class of target systems that must operate under 

precise timing constraints. Externalized dynamic adaptation may insert a level of 

uncertainty with respect to the timing of operations of its target systems. The control 

path put in place by the adaptation loop needs some time to be traversed from the 

production of monitoring data to the execution of the appropriate actuation – no 

matter how efficiently it is implemented. That can be defined as the end-to-end 

response time of the dynamic adaptation control loop, which may influence the 

execution time of the target system, or at least of that portion of the system that 

undergoes adaptation.  

There are a number of components to that response time. One component is 

inevitably a communication delay, due to the fact that both the target system and the 
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dynamic adaptation platform implementing the control loop may be widely 

distributed. Even in case stable and reliable communication channels which minimize 

the delay and variance in communication time can be assumed – thus allowing to 

assign an upper bound to that contribution – each of the diagnostic, decision, 

coordination and actuation components in the dynamic adaptation platform also 

provides its own contribution, deriving from the work they need to perform. 

Actutation is probably the least problematic aspect, since effectors are limited 

snippets of computational code which can many times be developed in such a away 

that their execution can be appropriately bounded. The other roles are likely to pose 

more complex problems. 

In particular, a considerable slice of the dynamic adaptation response time is likely 

spent within the coordination role. When expressing coordination, for instance as a 

process, the temporal aspect is paramount in all but the most trivial cases: the various 

activities that are to be coordinated need to be properly sequenced, and executed 

accordingly, with later activities often depending on the reported outcome of earlier 

ones. To that intrinsic temporal aspect of coordination, it is also necessary to add the 

execution time of the coordination facility itself. 

It may be particularly hard to characterize the component of the response time 

contributed by the adaptation process overall with a constant upper bound (which 

could be accounted for as a penalty, and added to the normal operation time of the 

system). Each specific kind of adaptation may take a different time to complete, and 

there may be considerable variance even among distinct occurrences of the same kind 

of adaptation. That happens because of the dynamic nature of the coordination 
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process and of the dependencies between steps: each step in the task decomposition 

hierarchy may unfold each time in very different sub-hierarchies of tasks, for instance 

when exceptions are raised and their corresponding handler sub-processes are fired. 

Given the significant delays that can be introduced in the response time of an 

externalized dynamic adaptation loop by the orchestration of the whole process, and 

the level of variability of those delays, “hard” real-time systems, in which all 

operations must observe a fixed temporal upper bound, may not be very well suited 

for this approach: while carrying out dynamic adaptation could resolve a number of 

problems and criticalities in those systems, it may also induce an unpredictable extra 

latency to their execution.  

Some externalized dynamic adaptation facilities that are applied to cases with hard 

real-time constraints exist; however, it can be noticed how they employ simplistic 

approaches to, or even bypass alotgether, the coordination role. See for example 

[181], which addresses survivability concerns. In it, each adaptation is a single 

intervention, carried out by a carefully chosen computational effector, whose 

execution time can be bound. 

With respect to hard real-time constraints, internalized adaptation provisions may 

have an advantage over externalized platforms, since they can achieve a better 

response time, and a lesser variance thereof. In fact, following the introduction of the 

dynamic real-time model in the late 80’s - early 90’s [39], a quantity of internalized 

approaches and systems have been researched, to overcome the limitations of the 

“binary” (guarantee or reject), static service management scheme for real-time 

systems. RESAS [51] was possibly one of the earliest examples of those dynamic 
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adaptation solutions: it promotes a programming model for the specification, 

development and enactment of internally adaptable applications, aimed specifically at 

enforcing reliability and timeliness in real-time systems. A multitude of other works 

have since then tried to address in a dynamic and adaptive way common concerns in 

that field, related to issues like resource management [38] [52], and QoS (re-

)negotiation [41]. Mostly, those efforts rely on some form of specialized middleware, 

which provides, in conjunction with support for real-time distributed communications 

and computations, a number of built-in adaptive features, mechanisms and policies 

that impact either the operating system level, or the application level, or both. Those 

solutions tend to optimize the closed set of adaptation operations they provide, to 

bound and minimize the induced latency, and sometimes also incorporate a model of 

their response time [40]: they can thus use that model for their decision-making, and 

opt for an adaptation compatible with the timeliness guarantees required by the 

normal system functionality, if such an adaptation exists. 

Those techniques could be somewhat extended also to externalized dynamic 

adaptation solutions. In the case of KX and Workflakes, that means that the platform 

would need to offer a closed set of possible adaptations, which would be mapped to a 

number of process fragments of limited complexity and dynamism, such that their 

enactment could be time-bounded with confidence. The diagnostic and decision 

component would then need to take in account temporal aspects in their work: each 

time the need for some adaptation were detected, only those adaptations that could be 

safely completed within time bounds would be approved and fired. Such an extension 
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to hard real-time system, may represent another open theme of investigation for the 

future development of this research. 

The same techniques apply of course also to “soft” real-time systems, i.e., systems for 

which timeliness of operation is a significant property, rather than a strict constraint, 

and for which the failure to operate within time bounds but does not necessarily 

equate to a fault. A significant part of the distributed applications of real-time 

computing, in particular over the Internet, fall in the soft category, including, among 

others, the increasingly prominent category of networked multimedia applications, 

such as audio/video streaming. Soft real-time systems – as opposed to hard ones - are 

also a more viable category of targets for externalized dynamic adaptation, given their 

more relaxed timeliness requirements. Even for soft real-time systems, however, the 

matter of the response time of the dynamic adaptation loop is very important: an 

adaptation that is intended to impact some target operation may be effective only if it 

completes within a certain amount of time (for example, in less or comparable time 

with respect to the temporal requirements for that operation), while it may be useless 

or even counter-productive in case it takes effect too late. 

In this work, the dynamic adaptation of soft real-time systems has been 

experimentally addressed, with the intention of validating the process-based 

coordination approach under such demanding requirements, and testing the limits of 

its applicability. One of the Workflakes case studies regards a typical soft real-time 

distributed application, since it addresses the synchronized viewing of an audio/video 

stream provisioned at different compression levels to a group of remote users, who 

work as a team and employ multimedia clients with diverse profiles of host and 
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networking resources for their collaboration. Section 5.2 discusses how the process-

based dynamic adaptation exerted by the Workflakes prototype attempts to optimize 

the settings of each client, in such a way that it can view the stream at the best 

possible level of compression given its available resources, while remaining in sync 

at all times with the other members of the group. Notice how that experiment 

considers the group of clients as well as the server as participating all together in the 

same target system, which is seen as a distributed CSCW application. 

Another feasibility issue regards the number of self-standing distributed components 

taking part in the target system, each of which may, in certain conditions, become a 

subject of dynamic adaptation. While the majority of distributed applications are 

constituted in practice of relatively few autonomous, inter-communicating computer 

processes, each of which, in turn, is made of a limited number of recognizable 

components, there are cases in which a single application results from the interactions 

of hundreds or even thousands of components: Significant cases can be found in the 

fields of agent-based computing (see [42]) and grid computing (for example, [43] 

[44]). A large number of potential adaptation subjects obviously puts to test the 

scalability of any externalized, end-to-end dynamic adaptation platform, and of each 

of its roles, including of course process-based coordination. There are some works 

that address the dynamic adaptation of classes of distributed systems that tend to have 

a large number of components, such as the afore mentioned agent [45] [46], and grid 

applications [47]; however, the application of process technology to the orchestration 

of dynamic adaptation of that scale has not been yet sufficiently experimented with, 
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either in the present work5 or (as far as it is known) elsewhere. One can only try to 

infer the feasibility of process technology to orchestrate effectively an adaptation 

involving hundreds or thousands coordination subjects, by looking at some results 

achieved by state-of-the-art distributed architectures for process enactment in other, 

similarly demanding, coordination contexts. For instance, in the ALP [48] and 

UltraLog [49] DARPA research programs, the decentralized architecture provided by 

Cougaar [25] has been used to run logistic planning workflows in which hundreds of 

coordination subjects participate. It may be important to notice that the time scale for 

the enactment of a logistic plan is is in the order of hours and days, therefore, likely to 

be orders of magnitude less demanding than that of the dynamic adaptation of 

running software; on the other hand, the process logic needed for such a large scale 

exercise is quite sophisticated, and complex to enact. Therefore, a clear conclusion on 

the feasibility of process technology for the coordination of systems of such a scale 

can not be easily reached, and this issue remains open for further investigation and 

experimentation. 

3.4 Critical assessment of the model 

The way process technology is used in this work to achieve the orchestration of 

dynamic adaptation, described in Section 3.1, is based on a number of ideas and 

assumptions; among the most important ones, there are the reactive nature of the 

process, its fragmentation, and the correspondence of the various fragments with 

triggers originating from the diagnostic or the decision role.  

                                                 
5 None of the applications that were made available as case studies has those characteristics. 
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After having described how that model enables the definition of the architecture of a 

process-based coordinator, and the scope of its applicability, it becomes important at 

this point to discuss the assumptions at the basis of the model, or rather some of their 

possible implications, in particular to see whether and how they could impose 

limitations to the approach. 

One major criticism is that the approach may remain limited to handling well known 

and well-proved dynamic adaptation contexts and solutions.  

With respect to context, that problem can derive from completely pre-determined 

associations between triggers and the corresponding process fragments. One 

motivation for such a strict correspondence is that a trigger, on the one hand, 

represents an entry point into the reactive adaptation process, and, on the other hand, 

signifies some (critical) condition related to the target system. To be able to properly 

codify the trigger, in terms of the information it carries to the process and in order to 

enable the firing of the corresponding process fragment, it may be necessary to know 

the condition in great detail. That need contrasts with the greater flexibility available 

in principle for the diagnostic role: the diagnostic facilities may be able to carry out 

different kinds of inference on the basis of the flow of raw information originating 

from the monitoring role, and report upon a variety of conditions relative to the target 

system, including some whose semantics and format could have not been previously 

analyzed, recognized and codified. Such a level of diagnostic sophistication may 

remain inaccessible to the orchestration process, whenever any events corresponding 

to unknown or new target system conditions cannot be mapped on the fly to a 

corresponding reactive process fragment, but, on the contrary, each process fragment 
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is intended to deal with some target system condition defined a priori. The mediation 

operated by the decision role between diagnostic events and process fragments can be 

particularly important to avoid this kind of limitation. 

Another possible limitation can originate from design decisions on the level of 

process fragmentation. It is relatively easy to define fragments in such a way that 

each of them handles fully on its own some macroscopic target system condition, and 

captures a complete, internally coherent plan that moves the target system as a whole 

from a well-known, diagnosed state to another well-known – and more desirable - 

state (such well-known states are sometimes called postures of the target system 

[31]). Those fragments are likely to be of considerable size and reach, and the 

orchestration of the dynamic adaptation for each condition is hence completely 

regulated by a single process fragment, in a fully planned ahead fashion. 

Such a planned-ahead approach aims at producing scripted processes, with a limited 

number of plausible paths and a few, predictable possible outcomes in response to 

any given trigger. That kind of process design is attractive since helps making 

different process fragments as disjoint as possible, which simplifies the construction, 

understanding and maintenance of the overall process. Planned-ahead design also 

reflects the way process technology is most commonly employed in other, more 

traditional application domains, such as business or clerical work; in those contexts, 

technologies and tools for process formalization and enactment are typically 

introduced to automate from start to end already established and proven work 

practices or procedures. 
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Unfortunately, in the peculiar application domain of dynamic adaptation, a likely 

consequence of a planned-ahead approach with coarse-grained fragments is a lack of 

open-endedness of the overall process, since those fragments are self-contained, have 

limited inter-relationships and hence are hard to compose with one another to form 

different plans. That implies that the process can formalize and orchestrate the 

dynamic adaptation of the target system only for those conditions whose solutions has 

previously been conceived and developed (and also thoroughly tested and validated). 

Within a given target system, those conditions map to the subset of expected 

problems. The guidance provided by the process for those problems is certainly 

valuable, since it guarantees that the corresponding solutions are faithfully automated 

according to a repeatable, consistent and controllable plan. However, target system 

conditions that are known, but whose resolution is not yet well understood, cannot be 

handled in that manner. To make the target system more fully autonomic, a process-

based dynamic adaptation facility that employs a fully planned-ahead approach may 

always need to be supplemented by different kinds of management provisions, for 

taking care of those “harder” cases. 

This limitation is not inherent in the use of process technology for dynamic software 

adaptation; rather, it is a design issue. A more desirable alternative to the limitations 

brought about by a dynamic adaptation process that adheres strictly to a planned-

ahead design exists. It requires the codification of the process as a larger number of 

finer-grained reactive adjustments to the target system, associated to equally fine-

grained triggers. While this issue can be seen simply as a bias in a trade-off regarding 

the modality and the granularity according to which the overall dynamic adaptation 
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process is developed and structured, its implications are in fact quite vast. The use of 

finer-grained, elementary process fragments and triggers effectively provides the 

coordination facility with a “bag of tricks” that are lower-level, remain more generic 

and can be used in many situations. In other worlds, it can improve the composability 

of the dynamic adaptation process as a whole, thus enabling the construction of open-

ended adaptation processes that may enjoy greater variability and flexibility than the 

scripted processes previously described. The concatenation of several of those low-

level fragments may incrementally guide the target system to an optimal, stable state 

in a situational, open-ended way, rather than following a plan scripted a priori. Open-

endedness enables the process engine to enact adaptation strategies that may 

considerably vary from time to time. 

In part because the application of process technology to the orchestration of dynamic 

adaptation is still a rather novel field, planned-ahead design of dynamic adaptation 

processes currently remains dominant. Methods for the design of processes in an 

open-ended, fine-grained and incremental fashion are currently not well outlined, and 

deserve systematic investigation. Techniques that would enable to automatically 

construct open-ended processes as a composition of those fined-grained fragments are 

an equally open problem. 

Also the experiments used for the evaluation of Workflakes, reported in Section 5, 

employ processes that are largely planned-ahead. However, they have been 

instrumental to reaching an understanding of the limitations of that approach and to 

start devising how to overcome those limitations, leading to some ideas on how to 

achieve a more open-ended orchestration of dynamic adaptation, which will be 
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presented in Section 6.3 and represent a major direction for the evolution of this 

research. 

It seems clear that the ability of defining open-ended processes would considerably 

benefit not only dynamic adaptation, but also other application domains of the 

process-based coordination of software systems, such as those outlined in Section 2.4. 

The call for open-endedness in general stems from the observation that the number of 

possible states in which multi-component, distributed systems can find themselves in 

real-life operation condition is huge6. It is noticeable how that observation is also one 

of the facts that drive the promotion and adoption of autonomic solutions in complex 

computing environments. The flexibility of a coordination plan aiming to guide the 

behavior of an ensemble of distributed software entities in all situations should, in the 

ideal case, match the high level of variability that can be observed in the state of that 

distributed system during its execution, as well as in its contextual and environmental 

conditions. 

                                                 
6 In an extreme, but telling example, IBM has estimated that these days a multi-tier software system 
built starting from multiple commercial-grade products and components may have as many as 1020 

different configurations, resulting from the cross-product of all the configuration options of 
participating components [30]. 
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4 Implementation 

A major principle that has been followed throughout the implementation work has 

been that of re-using and composing selected existing technologies whenever 

possible. There are several reasons for this. First of all, the contribution of this 

research intends to be mainly in investigating and evaluating the concept of process-

based orchestration and its potential for achieving externalized, end-to-end dynamic 

software adaptation; with respect to that goal, the development of a certain technical 

solution that supports that concept serves mainly for experimentation purposes. Then, 

one of the working hypotheses at the basis of this work is that process / workflow 

technology is at the present time sufficiently mature in its major traits to provide the 

right kind of support to the coordination role of dynamic adaptation. Furthermore, 

since one of the main concerns of externalized dynamic adaptation is the ability to 

handle not only brand new systems, but also component-based and legacy systems, it 

makes sense to adopt a similar stance with respect to the construction of the dynamic 

adaptation facilities themselves. 

Therefore, implementation efforts have focused on using, adapting and integrating 

carefully selected existing process enactment tools, process specification paradigms 

and also effector technologies to be orchestrated; moreover, a lot of attention has been 

given to easy integration and interchangeability, in order to remain open to changes 

involving different implementation options of any of the constituting elements. 

The experimental and development work for Workflakes has produced two 

successive implementations of the process-based controller design described in 

Section 3.2. 
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Besides a number of incremental improvements, derived from the insights and lessons 

learned from experience, the main difference between the first and the second version 

of the Workflakes implementation regards the way the dynamic adaptation process is 

represented loaded and processed within a Workflakes task processor. 

In its first version, the Workflakes engine employed process descriptions that are 

expressed via a set of coding patterns directly codified in the Java programming 

language, which are then dynamically loaded and executed as Java classes and 

objects into the engine at run time. 

In its second version, instead, Workflakes has adopted a state-of-the-art, high-level 

process specification language (Little-JIL [19], see Section 4.2 for details), and the 

Workflakes runtime incorporates appropriate class libraries and mechanisms to 

support the loading, interpretation and enactment of process specifications expressed 

in that formalism. 

Clearly, as in any paradigm change that elevates the level of abstraction employed for 

some practice, that difference benefits primarily the amount of work that is needed to 

develop the orchestration process, and, consequently, its understandability and 

maintenance. Furthermore, by embracing an existing formalized process specification 

formalism, it is also possible to focus on the evaluation of how well current process 

technology addresses any specificities inherent to dynamic adaptation processes, 

which features are most useful and which others are insufficient or even missing. 
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4.1 Workflakes v. 1: coding the process in a programming 

language 

Since its first implementation, Workflakes has relied on the process enactment core of 

the Cougaar open–source distributed platform [25] as the basis upon which to develop 

the runtime of the dynamic adaptation coordinator. 

Cougaar is a Java-based open-source platform for the creation and management of 

large-scale distributed applications, whose centerpiece is a decentralized process 

planning and execution engine. Cougaar includes resident process representation and 

enactment capabilities, which owe much to the domain of logistic planning. Typical 

Cougaar applications regard in fact the elaboration and automation of military 

logistics plans, which involve a large number of coordination nodes and a multitude 

of resources. To that end, Cougaar includes some advanced features, such as real-time 

monitoring of the process execution, evaluation of deviations or alternative plans, and 

selective re-planning. Cougaar supports a mechanism for the substitution of the 

default process formalism specialized on logistics planning with others; it also 

supports composition of complex applications, via process federation. 

The motivation for the selection of Cougaar as the basis for the Workflakes 

enactment engine is multifold: for instance, its support for large-scale distribution, 

coupled with its proven robustness and performance derived from the logistics 

application domain, even as a non-commercial prototype; furthermore, the 

availability of its code base as open source, plus the availability of know-how and 

support on the part of an active community of developers advancing and maintaining 

that open-source project; the option to integrate different process formalisms; finally, 
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the possibility of synergic work within the context of the DARPA DASADA 

program, in which members of the Cougaar development team were also involved, as 

representatives of BBN Technologies, which is strongly involved in maintaining the 

Cougaar open-source initiative and community. 

Version 1 of the Workflakes implementation was built on top of Cougaar release 8.8, 

and adopted its typical run-time architecture, based on a number of largely 

autonomous decentralized task processors that are interconnected via a distributed 

tuple space, named the Blackboard. In Version 1, the main focus was to come up with 

an implementation that could represent a valid proof of concept and constitute an 

operational basis for experimenting with case studies and getting hands-on 

experience. For that reason, it was decided not to address at that stage the 

investigation of suitable process formalisms for dynamic adaptation, and how to 

integrate and enact them in the Cougaar runtime. Instead, the resident logistics 

planning was adopted, and the dynamic adaptation processes employed in the various 

experiments conducted with Workflakes Version 1 were expressed according to it. 

In Cougaar, there is no dedicated process modeling facility, such as an editor of 

process specification documents. Processes are instead directly represented as 

executable code and programmed in Java. To that end, Cougaar provides a library of 

classes that capture many basic process concepts and abstractions within a set of 

relatively low level coding patterns [160]. 

The basic unit of a process in Cougaar is the task, which is represented by the 

homonymous Java class Task. A Task is seen as an action, and as such is modeled as 

a Verb, which identifies it. A Verb can have a direct object and multiple prepositional 
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phrases, taking indirect objects. Prepositions and objects (direct as well as indirect) 

are the cosntrcuts used to codify the bindings to a task of resources and artifacts, 

which are represented by objects of the Asset class and its subclasses. A task in a 

certain Cougaar process can therefore be represented by a signature in the form: 

<Verb> <Direct Object> [<Preposition> <Indirect Object>]* 

for example: 

Deploy Server Upon Host-Machine Using Tool 

where Server, Host-Machine and Tool represent Asset types that need to be used for 

the task Deploy. 

Other Java classes that take part in the specification of a task in Cougaar are 

Preferences, which in a typical example pertain to the temporal scheduling of the task 

(e.g., within 1 hour), but can also be predicates on other Aspects, i.e., quantitative or 

logical features attached to tasks and groups thereof. There are also Constraints that 

can be imposed on Aspects: a typical way to employ Constraints is to define 

precedence relationships among tasks, for example for sequential or parallel ordering. 

A single task is therefore by itself a collection of objects that needs to be properly 

instantiated. 

Other Java classes in the same Cougaar class library, termed PlanElements, describe 

and regulate the grouping of process sub-structures made of inter-dependent tasks. 

Since Cougaar uses principally task decomposition, the Expansion of a non-atomic 

task into a full-fledged sub-process is the most important PlanElement type. An 

Aggregation is another PlanElement type, which represents a fan-in point for the 

process flow, in which multiple parallel tasks are merged into a single task. The 
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Allocation PlanElement type defines instead the runtime binding of asset instances to 

a task instance, against the direct and indirect objects in the signature of that task. 

There are other classes still, which provide mechanisms for the evaluation of 

Workflows, i.e., enacted process sub-structures with their attached aspects and 

preferences, and which can be programmed to oversee their planning, for example to 

guarantee that any imposed Constraints are actually met by the process hierarchy as it 

unfolds. 

It is clear that the experience of the programmer with the class library sketched above 

is an essential tool to correctly convey the specification of a non-trivial Cougaar 

process in a set of Java objects, which get loaded and reside in the Blackboard of one 

or more task processors. 

With respect to the runtime, Cougaar employs a plugin approach to compose and 

customize the functionality of each single task processor. Each plugin implements 

some particular logic or provides some specific capability; it interacts directly with 

the Blackboard, and, through the Blackboard, indirectly with other plugins or other 

task processors. For example, the process execution mechanisms within a task 

processor are implemented as a set of plugins that typically includes a scheduler, a 

state and plan evaluator, an allocator of resources and data, and possibly others. They 

subscribe to the Blackboard and start to evaluate, schedule, fire and expand process 

tasks, allocate resource and data assets to them, manipulate their state, and also 

execute any computational functions that may be associated to tasks. The runtime 

libraries of Cougaar offer base implementations for those core plugins, which are 

however devoid of any logic on how to deal with Blackboard objects representing a 
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certain process. It is another responsibility of the Cougaar programmer to specialize 

by inheritance those base implementations, in order to correctly handle the semantics 

of the process specification objects that he/she loads in the Blackboard. 

Workflakes embraced the plugin philosophy of Cougaar, and its implementation was 

largely carried out on top of the afore mentioned facilities, by developing a set of 

specialized plugins. Those plugins implement together the architectural blueprints 

described in Section 3.2, and – as it is discussed below – supplement normal Cougaar 

functionality in two major ways: they implement facilities for the integration and 

handling of effectors as first-class process entities; furthermore, they offer 

mechanisms to dynamically load and in the engine of  process specifications. 

As shown in Figure 12, a typical task processor in Version 1 of Workflakes includes a 

number of plugins. Several plugins are what Cougaar calls Logic Data Model (LDM) 

plugins. They reify the design of data conduits discussed in Section 3.2, and are 

employed in the first place to import and convert KX gauge events in terms of 

process-relevant facts stored in the Blackboard; another LDM plugin is devoted to the 

interface with the effectors catalog; others can be used to convey and maintain 

internally the knowledge about the target system and its state maintained in the 

behavioral models, communicate that knowledge to other parts of the dynamic 

adaptation platform, or otherwise wrap generic external systems, such as decision 

facilities. 

Moreover, the essential components overseeing process enactment are: an Expander 

plugin, which loads process definitions, spells them out as hierarchical 

decompositions of tasks and schedules them; an Allocator plugin that maps scheduled 
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tasks to resources (among which are effectors and target system components) as 

needed; and an Executor plugin that handles the instantiation and execution of 

effectors and encapsulates the actuation subsystem of the controller that regulates all 

interactions with the actuation role of dynamic adaptation. 

Blackboard

Expander Plugin

Executor Plugin

LDM Plugins

Allocator Plugin

Gauge events 

Behavioral Model 

Effectors
catalogue

BlackboardBlackboard

Expander PluginExpander Plugin

Executor Plugin

LDM Plugins

Allocator Plugin

WVM 

 

Figure 12: Representation of a task processor in Workflakes Version 1. 

One aspect in which Workflakes substantially extends and specializes a generic 

Cougaar task processor is precisely the focus on integrating actuation facilities. In 

Version 1, the preferred option for implementing effectors is employing mobile code. 

Mobile code is intuitively a particularly apt technology for fulfilling the actuation role 

within an externalized dynamic adaptation infrastructure, since by its very nature it 

operates on the target system from the outside. That guarantees that new forms of 

adaptation computations can be easily developed and deployed at any time onto the 

target with minimal disruption to service operation, once that the target components 

are equipped with the facilities necessary to exchange and execute mobile agents. In 
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particular, the first version of the Workflakes implementation was integrated with the 

Worklets mobile agent platform, which the Programming Systems Lab had developed 

originally for unconnected reasons [70], and then adopted also for dynamic adaptation 

[7]. Worklets are code-carrying agents: each worklet is a container that carries Java 

mobile code snippets (termed worklet junctions), and deposits them onto one or more 

target components, according to a programmable trajectory. Once deposited, a 

junction is governed by programmable constructs that specify certain facets of its 

execution, such as conditional execution, repetition, timing, priority, etc. The agent 

transport facilities and the code execution environment are provided by Worklet 

Virtual Machines (WVMs) residing at all “stops” in a worklet trajectory. The 

availability of WVMs embedded in all the target system components that may need to 

be visited by incoming Worklets is therefore a pre-requisite to use this mobile code 

approach. 

Workflakes regards effectors’ code snippets as first-class resources for the dynamic 

adaptation process. It takes care of selecting appropriate effectors, configuring them 

with any data of interest coming from the process context (that is, the parameters 

flowing into the process task that instantiates and invokes an effector), loading them 

onto worklets, and dispatching those worklets onto the target system, to induce the 

side effects intended by the adaptation process. On their part, worklets effectors are 

configured to return to base in all cases, whenever they are finished with their work: 

that way, they report back to the process the outcome of their work, which may be 

critical to steer the rest of the adaptation this or that way. 
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All of that occurs typically as part of the execution of a leaf task in the adaptation 

process, and is accomplished by the Executor plugin. That plugin incorporates a 

WVM, which acts as the “launching pad” for worklet effectors. The Executor plugin 

collaborates with the effectors catalog, which for worklets takes the name and the 

form of a Worklet Factory. A Worklet Factory is composed of a repository of 

junctions, and a mechanism for searching, instantiating and configuring junctions. In 

the Worklet Factory, it is possible to associate semantic descriptors to junctions, 

which can be used to retrieve the appropriate effectors for the various process tasks: 

that is typically a three-ways match, which must take in account the semantics of the 

process task that requires the instantiation of an effector, the description of the 

junctions in the catalog, and the knowledge about the characteristics of the target 

components to be effected. 

The level of sophistication used for implementing that match may greatly vary: from 

a simple lookup of the junction class name on the basis of some information attached 

to the process task that requires an effector, to the evaluation of architectural 

knowledge captured in the behavioral models available to the dynamic adaptation 

platform, to semantic reasoning on ontologies like those employed in Semantic Web 

contexts (e.g., OWL [161]). 

Workflakes Version 1 was initially tightly coupled with the worklet technology, and 

incorporated specialized, ad hoc provisions for interacting with them. Later on, other 

options for integrating effectors were investigated. For example, SOAP-based 

messaging was used in a few experiments. Those alternative experiments led to a 

more clear-cut decoupling of the Executor plugin from actuation technologies, and 

 



120 

eventually to the design of the high-level actuation API as it is conceptualized in 

Section 3.2, which was implemented later on in Version 2 (see Section 4.2). 

In Workflakes Version 1, there is another fundamental way in which the task 

processor interacts with and exploits worklets, which also represents the other major 

extension with respect to the underlying Cougaar technology. Workflakes Version 1 

uses worklets also to load process definitions on the fly onto task processors, either 

with a pull or a push modality. 

The main rationale for that is that the dynamic adaptation of target applications is 

likely to call for dynamically adaptable coordination and control. That contrasts with 

the Cougaar approach of hardcoding the process logic in a software program written 

within process execution plugins. In an effort to provide support for dynamic process 

loading and process evolution, as well as in an attempt to pull up somewhat the level 

of abstraction for the specification of processes, albeit in the absence of an abstract 

modeling language, a set of shell plugins were implemented, to substitute for the base 

Cougaar implementations of core plugins and LDM plugins. Also shell plugins in 

Workflakes – just like the base Cougaar plugin classes - are devoid of any hard-coded 

logic related to any particular process, but instead of supporting the implementation 

of process semantics via inheritance and specialization, they accommodate the 

insertion of process semantics at runtime from incoming worklets that carry 

appropriate code. 

When a Workflakes task processor is launched with a certain configuration of 

plugins, they are all initially idle, and are merely indicative of the kinds of service and 

functionality that task processor is meant to offer within the overall distributed 
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Workflakes engine. Shell plugins can then be activated at any time by the injection of 

specialized process definition junctions containing the Java code that implements 

some process specification. Worklets dynamically deploy those junctions onto one or 

more task processors and their shell plugins. Only after such deployment, shell 

plugins acquire a definite behavior, and start taking part in the enactment of the 

process. 

The main advantage of that scheme is that the process enactment infrastructure and 

the process specification remain more clearly independent. No modification of the 

core process enactment mechanisms is required anymore every time a new process 

must be defined; process programming, although still carried out in Java, remains 

confined to the development of a certain number of process definition junctions, and 

is conveniently supported by a relatively small, dedicated class library. 

Furthermore, this process delivery mechanism is effective for a centralized as well as 

a more scalable, decentralized process enactment architecture. It may, for example, be 

used in the pull modality to incrementally retrieve process fragments from a process 

repository, only when requested to handle certain specific adaptations, or in the push 

modality for on-the-fly process evolution across a distributed Workflakes installation. 

A cohort of process definition worklets can be configured to distribute different 

process fragments to a number of task processors, as it is most convenient for 

execution: that can be used also for migration of process specifications at run time 

between nodes, which enables various forms of dynamic meta-adaptation of the 

process-based controller itself. In this scheme, since process are specified by 
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developing a small set of worklet junctions, the Worklet Factory which has the role of 

the effectors repository, doubles up as the process repository as well. 

Finally, the interplay of shell plugins and process definition junctions – as 

implemented in Workflakes Version 1 - provides a limited set of uniform coding 

patterns, which guides and simplifies to some extent the work of defining processes. 

4.2 Workflakes v. 2: employing a process modeling 

notation 

Following the experience gained in implementing the first version of Workflakes, and 

the lessons learned in applying it to a number of case studies (see Sections 5.1, 5.3 

and 5.4), a second implementation iteration was carried out. Besides the need fo a 

more generic and abstract actuation subsystem – as already mentioned – it was clear 

that the other major outstanding concern was the support of some high-level, 

expressive and formal process specification language, which could be accommodated 

by the Cougaar runtime. The rational was to significantly simplify the task of 

developing, testing and maintaining non-trivial dynamic adaptation processes in 

Workflakes. As a consequence, the majority of the effort in Version 2 was spent in 

designing and developing the integration of a process language in the Cougaar 

runtime. Little-JIL [19], developed at the University of Massachusetts at Amherst, 

was the language of choice for this experimental development. Some of the major 

characteristics of that language, which guided that choice, are listed below: 

• Little-JIL has an explicit focus on agents coordination: therefore it naturally 

leans towards problem domains that – as discussed in Section 2.4 – carry a 
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number of similarities with respect to those faced by dynamic software 

adaptation. 

• Little-JIL provides well formalized execution semantics for a rich set of 

process definition constructs. Among other things, it includes sophisticated 

support for exceptions and their handling, which are crucial for dynamic 

adaptation (to handle contingencies and implement alternatives, backtracking, 

compensations, etc.). 

• It offers a high-level graphic language and editor. 

• Processes are expressed according to a task decomposition hierarchy, which 

maps well to the chosen model for dynamic adaptation processes described in 

Section 3.1, as well as to the major constructs that have built-in support in the 

Cougaar runtime libraries. 

• Process specifications are modular and support well the composition of 

fragments: a sub-process in the main process specification document can be 

represented simply by its parent task, while can be fully specified with all of 

its hierarchy of sub-tasks in a different document. 

• Bindings for the data model can be included in and referenced from within the 

process diagram, which facilitates representing data that must be conveyed to 

effectors, as well as the effectors themselves. 

All of the characteristics above indicated that providing support to processes defined 

with Little-JIL in the second release of Workflakes could represent a significant 

enhancement of the expressive capabilities of the system, and consequently of its 

usefulness. On the other hand, the major difficulty lied in being able to port in a 
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faithful way the rich set of process constructs made available in the Little-JIL 

language within the Cougaar runtime and its computational model. While the generic 

structure of workflows according to both approaches is a task decomposition 

hierarchy, some of the more sophisticated Little-JIL process constructs cannot be 

readily expressed in terms of the core workflow class libraries and API of Cougaar. 

Some noticeable constructs are outlined below (for a more complete overview refer to 

[19] and the language documentation at http://laser.cs.cumass.edu): 

• Advanced sequencing modes for the workflow of sub-processes originating 

from a parent step. Besides classic sequential and parallel flows, the other 

modes supported are: choice, which non-deterministically selects one of the 

sub-steps for execution; and try, which tries in sequence all the sub-steps, until 

one is successfully executed. 

• Pre-requisite sub-processes attached to any step, which are enacted before that 

step, and whose successful execution determines if that step can be enacted. 

• Post-requisite sub-processes attached to any step, which are enacted 

immediately after the workflow of that step is finished, and whose successful 

execution determines if that step can itself be considered successful. 

• Four different semantics for catching, handling and consuming exceptions: 

continue, which does not change the scheduling of the workflow of the step 

catching the exception in any way; complete, which forces the immediate 

completion of the step catching the exception; rethrow, which terminates the 

step catching the exception and passes the exception one level up in the task 

decomposition hierarchy to its parent step; and restart, which forces the step 
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catching the exception to start its workflow anew. Each of those exception 

handling modes can also be associated to a sub-process (a handler step) that is 

enacted just before the exception is consumed by the step that caught it. 

• Cardinality of the transitions between steps, which determines how many 

instances of a given sub-step (default is 1) are to be enacted for the workflow 

of the parent step. Cardinality values can be constant values, or can be 

variables, linked to the size of a resource set passed from the parent step to its 

sub-steps. 

Because of all of the above, a number of new, custom plugins had to be developed, to 

aid in the translation and execution of a Little-JIL process. Each of them takes care 

individually of certain Little-JIL constructs and specificities; all together, they 

cooperatively implement all the necessary capabilities for a Little-JIL enabled 

Cougaar task processor. The structure of a Little-JIL enabled task processor is 

displayed in Figure 13,. For the integration, Cougaar release 9.6 and Little-JIL 1.3 

were employed.  

In Workflakes Version 2, process specifications are codified directly in the Little-JIL 

graphic editor, thus setting the control flow and the data flow of artifacts through 

tasks, as well as the resource allocation requirements. Resources and artifacts, in 

accord to the data modeling method adopted in Little-JIL are defined as Java classes: 

those classes can be themselves object-oriented implementations of data and 

resources, or can represent wrappers for the management of data and resources 

(possibly legacy) that remain external to the process. In both cases, their definitions 

are included in the process specification document (also called a Little-JIL diagram). 

 



126 

Effectors
Catalog 

LDM Plugins

Little-JIL 
Diagram 

Blackboard TaskExecutorClassPlugInServlet 

Process 
Repository 

LittleJILExpanderPlugIn 

TaskExpanderPlugIn 
ExceptionHandlerPlugIn TaskAllocatorPlugIn

 

Figure 13: Representation of a task processor in Workflakes Version 2. 

A process diagram can be output by the editor in two formats: as a serialized set of 

Java objects, or as an XML document. The serialized (binary) format is the most 

commonly used, since it allows to get the whole diagram in or out of the memory of a 

Java computer program very efficiently and reliably. Workflakes currently employs 

the serialized form; a diagram can be input to a task processor by using a specialized 

Servlet component that is available in the Cougaar framework, namely the 

LittleJilLoaderServletComponent. By using a servlet mechanism, Workflakes Version 

2 necessarily leans towards the “push” modality for loading process specifications 

into the enactment engine. As an example, it could be the decision role of the 

dynamic adaptation platform that would select an appropriate diagram from the 

process repository and invoke the servlet to load that diagram into Workflakes. 
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With a high-level, formal description of the process that is developed outside and is 

then interpreted within of the process engine, and with the servlet mechanism 

mentioned above, most of the motivations for shell plugins and workflow definition 

junctions as conceived in Workflakes Version 1 are not cogent in Version 2. In fact, 

Version 2 plugins that represent process execution mechanisms in the engine are 

specializations of standards Cougaar plugins, not shell plugins. Shell plugins can still 

be used in Version 2 to enable the dynamic modification of the behavior of 

components in the engine devoted to other purposes: for instance, LDM plugins that 

are used for the exchange of data with external sources and sinks, or for the 

interaction with other elements in the dynamic adaptation platform, such as the 

decision facilities or the actuation subsystem. 

Notice in fact that, to complete the information needed for running the dynamic 

adaptation process, data about effectors that are to be used in the course of the 

dynamic adaptation process must also be loaded to supplement the process diagram. 

That is accomplished through an LDM plugin that interfaces with the effectors 

repository, and can be done together with the process loading (in push mode), or later 

on, on a per-need basis (in pull mode). Data about effectors is captured by assets that 

subclass ExecAgentAsset. They provide explicit associations between certain leaf 

tasks in the dynamic adaptation process and certain effectors: those associations allow 

the process engine to instantiate or recruit specific effectors (for the definition of 

Instantiate, Recruit and other effector-handling primitives refer to the discussion on 

the actuation API in Section 3.2) when needed by the process as it is enacted. 
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A loaded process diagram is interpreted by the LittleJILExpanderPlugIn, which 

traverses its structure and creates Cougaar Task instances in the Blackboard for each 

Little-JIL step, and recursively for each of its sub-steps. That plugin sets constraints 

correctly for sequential or parallel execution, and creates other structures of Cougaar 

tasks, to capture appropriately certain specific constructs, such as cardinality, pre- and 

post-requisites, and the try and choice sequencing modes of Little-JIL. 

While the LittleJILExpanderPlugIn is concerned with the translation of Little-JIL 

diagrams into an internal runtime representation, the TaskExpanderPlugIn has the 

main purpose of advancing the execution of the process by working on that 

representation. The TaskExpanderPlugIn evaluates the outstanding constraints of 

each non-atomic (parent) task that is put in the blackboard by the 

LittleJILExpanderPlugIn; in case all constraints are satisfied, it creates an expansion 

that effectively initiates the enactment of that task and contains some of its subtasks 

In accordance with the semantics of the corresponding step, the subtasks to be 

inserted in the Expansion change (e.g., it initially includes only the first subtask for a 

sequential task, or all of the subtasks for a parallel task, and so on). Thus, the 

TaskExpanderPlugIn incrementally creates the entire task decomposition hierarchy of 

the process as it progresses, from its root down to its leaf tasks. 

Leaf tasks – i.e., the loci in which the coordination and computational semantics of a 

dynamic adaptation process come together - are managed by the 

TaskAllocatorPlugIn. Its main purpose is to bind to each posted leaf task any 

effectors or other computational entities (such as helper functions) that need to be 

executed at that point in the process; it accomplishes that by creating an appropriate 
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instance of a Cougaar Allocation. A completed allocation includes an 

ExecAgentAsset as an assigned resource, and signifies that the leaf task is ready to 

carry out its side effects on the target system through the actuation subsystem. 

Within the process engine, the plugin in charge of managing generic effectors and 

their execution, and therefore of implementing the actuation subsystem according to 

the design of a process-based controller in Section 3.2 is the 

TaskExecutorClassPlugIn. 

Effectors in Workflakes Version 2 can be worklets, as originally in Version 1, or 

other computational facilities that can be exploited to actuate the target system. All 

kinds of effectors in Version 2 are uniformly wrapped by and accessed through a Java 

interface that is named ExecutableTask. Classes implementing that interface are 

assumed to encapsulate the internal mechanics, functionality and logic of some 

effector, and provide a simple way to develop effectors of various types. The class 

name of the ExecutableTask specialization provided by an effector is part of the 

information stored in an ExecAgentAsset. In all experiments, effectors have been 

coded in Java; to integrate non-Java effectors, one can rely on the cross-platform 

interoperability facilities made available by the Java framework, such as the Java 

Native Interface (JNI) [162], and subclass ExecutableTask to expose those facilities. 

The TaskExecutorClassPlugIn takes control of ExecutableTask instances by looking 

at the allocations published in the Blackboard by the TaskAllocatorPlugIn; it then 

decides whether to recruit an existing effector of the kind specified in the 

ExecAgentAsset of the allocation, or – if needed - creating a new instance of it; then, 

the TaskExecutorClassPlugIn activates the effector by invoking its operation through 
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the ExecutableTask interface. The TaskExecutorClassPlugIn also provides the 

methods that allow to relay back to the process the return data generated by the 

effector’s execution, which must always include a success/failure flag. 

Finally, a Little-JIL-enabled task processor includes the ExceptionHandlerPlugIn, 

which is in charge to implement the logic necessary to comply with the various kinds 

of Little-JIL exceptions. The exception mechanism can be used to describe internal as 

well as external contingencies that can impact the dynamic adaptation process. 

Typical external contingencies exceptions are thrown by the 

TaskExecutorClassPlugIn when a task fails, or by the TaskAllocatorPlugIn when 

some piece of data or some resource cannot be found and bound to a task as needed. 

Internal contingencies exceptions are instead typically thrown as a part of the side 

effect of the computational actions carried out by effectors. 

Since in the Little-JIL language the handling of exceptions can be defined in a variety 

of ways, each with its own semantics, the language provides sophisticated support to 

the kinds of exception handling that are necessary for dynamic adaptation processes, 

and in particular to compensations. To properly support compensations, an exception 

handling semantics that is likely useful in many cases is the rethrow, coupled with a 

handler step. That allows to modularize compensations: for each side effect that does 

not apply anymore as the consequence of the exception, a process fragments in charge 

of undoing that side effect can be defined. Furthermore, rethrowing the exception 

allows to traverse the various levels of the task decomposition hierarchy back up until 

all unwanted side effects are compensated. 

 



131 

5 Experiments 

Several experiments of different scale and in varied application domains have been 

carried out to validate the KX externalized platform for dynamic software adaptation, 

and the Workflakes process-based coordinator. Case studies to date have considered 

distributed target systems that range from Internet-wide information systems, to 

Business-to-Customer (B2C) marketplaces, to multi-channel instant messaging 

applications, to collaborative multimedia systems. The principal traits of those case 

studies are presented hereby, together with the most significant results and lessons 

that have been drawn from them. 

It is noticeable that while most of the case studies have been implemented and 

evaluated by components of the same research team that developed KX and 

Workflakes, others have been carried out by external organizations, in the context of 

multi-party collaborative research projects7. One such case study is reported in this 

document - necessarily with less detail than the others - since it helps to highlight the 

usability and usefulness of this work, although in the state of a research prototype, in 

contexts that were not known or under the full control of the prototype developers. 

Finally, notice that among the case studies presented below, the majority was 

implemented by using the earlier version 1 of Workflakes. Only the AI2TV case study 

of Section 5.2 has been carried out in such a time frame that it could exploit version 2 

of the prototype. 

                                                 
7 Specifically, the case study discussed in Section 5.2 was developed within the EURESCOM project 
P-1108 (OLIVES). 
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5.1 Instant messaging service 

Background 

Figure 14

Figure 14: The IM service architecture 

 represents the architecture of a J2EE-based multi-channel instant 

messaging service for personal communication (IM in the remainder), which is 

currently offered on a 24/7/365 basis to tens of thousands of customers through a 

variety of channels, such as the Web, PC-based Internet chat, Short Message Service 

(SMS), Wireless Application Protocol, etc. 
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The service runtime environment consists of a typical three-tiered server farm: a 

commercial software provides a common load balancing front end to all end-users 
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and redirects all client traffic to several replicas of the IM components, which are 

installed and operate on a set of middle tier hosts. The various replicas of the IM 

server all share a relational database and a common runtime state repository, which 

make up the backend tier, and allow replicas to operate in an undifferentiated way as 

a collective service. Some of the IM servers are wrapped by Web applications 

running on commercial J2EE application servers; others may provide additional 

facilities, which handle access to the service through specific channels, such as SMS 

or WAP, and interoperate with third-party components and resources, e.g., gateways 

to the cell phone communication network. 

Case study description 

The case study addressed two main goals: enhancing the Quality of Service (QoS) 

perceived by end users, and facilitating service management by the staff in charge of 

supporting such a complex distributed application. 

With respect to QoS, the requirements of the case study focused on resolving existing 

load and availability problems by automating service scalability, as well as 

reconfiguring promptly and opportunely service parameters related to serving client 

requests efficiently. As for service management, the requirements focused on the 

automation of the deployment, bootstrapping and configuration of the various service 

components, the continuous monitoring of those components and their interactions, 

and the support for “hot” service staging via automated rollout of new versions and 

patches without service interruption. Together, those requirements address 

configuration, optimization and healing aspects. 
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All of those requirements are captured and addressed within a dynamic adaptation 

process automated by Workflakes. This process requires – among the logic and data 

loaded at startup onto the Workflakes engine – explicit knowledge about the service 

architecture and the runtime environment of the server farm. That knowledge is 

currently codified in a proprietary way: it is expressed as data that is input into 

Workflakes at the beginning of its operation and is maintained as a set of assets in its 

Blackboard. 

At startup, Workflakes is given a configuration of service components that must be 

instantiated. Workflakes selects some hosts in the server farm for this initial 

deployment and sends them Worklets to execute bootstrapping code for the IM 

components and configure the servers with all the necessary parameters (such as the 

JDBC connection handle to the DBMS, the port numbers for connections by clients 

and other IM servers, etc.). Notice that not only the configuration information, but 

also the executable code of the IM server is deployed and loaded on demand, taking 

advantage of a code-pulling feature of the Worklets agent platform. (This approach is 

also followed in Software Dock [36]).  

Depending on the types of the components, the deployment sub-process may change. 

For example, a normal IM server can be instantiated and configured by a single 

Worklet in one step. Web-based IM servers are notably more complex to startup and 

configure, since that requires first of all the spawning of a new instance of the 

application server, then the instantiation and parameterization of the residing Web 

application with respect to the hosting application server, and finally its configuration 

and activation as an IM component.  
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When a Worklet starts up an IM server, sensors are simultaneously activated to track 

the server’s instantiation and initialization. When the instantiation is successful, the 

process must dispatch other Worklets onto the load balancer of the server farm, which 

accepts traffic for the IM service, to instruct it to route it to the right host address and 

port for the new server. In the event of an unsuccessful initialization, instead, the 

likely cause is inferred by the gauge layer of the dynamic adaptation platform and 

reported back to the process (and also to a dashboard GUI implemented specifically 

for this case study). Depending on the cause of that contingency and the stage of the 

deployment process, Workflakes may react in different ways: it may decide to try to 

bootstrap an IM server on the same host again, or on another available host, or it 

could skip that portion of the configuration or even abort the whole process. 

Following the initial bootstrapping phase, and after the intended service configuration 

is in place, Workflakes takes a fully reactive role, while the probing and gauging 

layers of the platform start monitoring and analyzing the dynamics of service usage. 

Sensors and gauges are activated for a number of purposes: to capture the logging in 

and out of clients onto the servers, count the number of users logged on at each 

server, signal the raising of exceptions, monitor service latency and the number of 

service requests queued by the Web applications, etc.  

This case study is particularly concerned with load and responsiveness. Each IM 

server has an associated load threshold, which is best expressed in terms of the 

number of concurrently active clients, in relationship with the memory resources of 

the host. When that threshold is passed, Workflakes reacts by trying to scale up the 

service: it selects from the system model some unused machine available in the server 
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farm, and repeats the server bootstrapping process fragment on that machine, 

providing a new server replica for handling the extra load, thus achieving enhanced 

reliability and performance of the overall service.  

For Web IM components, it was also possible to reach a finer level of adaptation, 

exploiting the management capabilities built into the J2EE application server used for 

the IM web applications, that is, BEA WebLogic server [163]. They are JMX 

Management Beans, some of which could be integrated smoothly within both the 

sensors and effectors layers of our platform. By taking advantage of those 

Management Beans, Workflakes can decide to intervene also in response to variations 

in the size of the queue of pending requests, and manipulate the details of the 

threading model of the Web IM application in response. That optimizes the degree of 

parallelism in processing client requests, and improves responsiveness. 

The case study also experimented with service staging and evolution scenarios, 

aiming at complete automation and minimal service disruption. It turns out that a 

service evolution campaign can be supported by Workflakes with relatively minor 

changes to the service bootstrapping process described above. The staging process 

includes specific fragments that gradually withdraw from the load balancer outdated 

server instances (thus disallowing new traffic to be assigned to them), and shut them 

down when traffic is absent or minimal, while another process fragment coordinately 

starts up other server instances with the new code release, registers them on the load 

balancer, and thus makes them gradually available to users. 
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Case study results 

As part of the work carried out on the IM case study, some results originating from 

the experiments described above have been evaluated. 

A set of quantitative results were derived from running and observing the adapted IM 

system in lab conditions, using manual and automated traffic simulations. The 

automated simulations used the same tools and traffic profiles that were employed by 

the service developers for their stress and quality assurance testing, which simulated 

traffic spikes interleaved with periods of steady request levels to the IM servers. 

Following from the main goal stated for the experiment, the results refer primarily to 

the levels of automated support provided to the maintenance and management 

activities carried out onto the IM service on the field. Also some measures about the 

development effort necessary to implement the case study were taken. The most 

significant quantitative results are reported below: 

• Substantially reduced effort for the deployment, configuration and evolution 

(staging) of an IM service in the field. Current manual procedures (using Unix 

shell scripts and assuming DBMS and application servers pre-installed in the 

server farm) can take ½ to 1 person-day, with expert personnel present locally. 

With KX and Workflakes, that is reduced to 1-2 minutes from a remote location. 

• Reduced monitoring and maintenance effort necessary to ensure the health of the 

running service. A system administrator was previously needed on-site 24/7/365, 

with a secondary support team of experts available on call. KX with Workflakes 

completely automates the monitoring of a set of major service parameters, as well 

as the counter-measures to be taken for a set of well-known critical conditions. 
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Additionally, since the process of scaling the system is completely automated, 

there is no risk of under- or over-provisioning, which represents another 

improvement for the service management and administration. 

• Reduced reaction times and improved availability and reliability: for example, 

KX/Workflakes recognizes the passing of the IM load threshold in 1-2 seconds 

and takes approximately 40 seconds to put in place an additional server replica. 

Previously there was no direct overload detection: the sysadmin in charge was 

supposed to check the number of concurrent users from the logs and to manually 

start up an additional server when necessary. That is clearly error-prone and could 

endanger service availability, in which case resource shortage would crash 

overloaded servers. 

• Manageable coding complexity: by exploiting the facilities provided by KX, 

sensors, gauges and effectors are derived from generic code instrumentation 

templates that are then customized with situational logic. This results in rather 

compact code: 15 Java code lines for sensors on average, usually less than 100 for 

effectors. The total code written for this specific case study on top of the generic 

dynamic adaptation facilities provided by the KX/Workflakes infrastructure was 

slightly above 2000 lines of Java and XML code. 

As a conclusion that can be drawn from the quantitative measurements above, 

employing KX and Workflakes in this case study has shown higher levels of 

automation, flexibility and reliability with respect to the management of the target 

service and its QoS, when compared with more traditional labor-intensive 

management and administration practices. Those results, when put in the frame of the 
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autonomic capability model, contribute to raise the system management practices for 

the IM service from level 2 (mostly manual management, supported by some 

monitoring tools) to level 4 (fully automated management, taken care of by the 

adaptation closed control loop). 

Additional interesting lessons originating from this case study include the following 

qualitative considerations: 

• Impact on service development: The team that carried out the case study 

positioned themselves past the end of the development phase of the project life 

cycle and just prior to the deployment phase. No requirements were conveyed 

back to the separate team in charge of furthering the development of the target IM 

service. The software for the IM service was hence treated as a complete legacy, 

although a legacy for which all the specifications, software artifacts and 

accumulated project knowledge happened to be available, and could be shared 

between the case study team and the service development team. Notice that also a 

different kind of legacy applies in the case study: the application server and the 

load balancer are commercial software products (WebLogic Server by BEA [163] 

and Network Dispatcher by IBM [164], respectively), which however provide 

sufficient APIs for carrying out their monitoring and actuation. Even within those 

limitations, it was possible to satisfy all the requirements of the case study. 

• Impact of the behavioral model: the amount of effort to analyze the model of the 

target system and its behavior for dynamic adaptation purposes constituted by 

itself about one third of the overall effort spent for the case study (46 out of about 

140 person / days), that is, to develop, test and evaluate the dynamic adaptation 
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solution for the IM service according to requirements and on top of the KX 

platform. Furthermore, more than 10% of the software that was written was 

intended to capture architectural information, relationships and inferences with 

respect to the target system, and represent them to KX and Workflakes as 

proprietary models that could inform the work of the platform. That constitutes 

evidence of the strong dependency of dynamic adaptation on the ability to 

capture, describe and expose in an abstract and machine-readable way knowledge 

about a number of aspects relevant to the target architecture, and provides 

empirical support and motivation to explore integration of dynamic adaptation 

tools and platforms with formal models. 

• Integrated automated management: here is where the benefit of a full-fledged 

process engine becomes most evident. Traditional application management is 

concerned with reporting warnings, alarms and other information to some 

knowledgeable human operator who can recognize situations as they occur, and 

take actions as needed. The amount of guidance and automation on the part of the 

management platform then may be very limited. Our approach offers instead a 

high level of guidance, coordination and automation to enforce what is a complex 

but many times largely repeatable and codifiable process. 

5.2 AI2TV 

Background 

AI2TV stands for “Adaptive Internet Interactive Team Video”. AI2TV is a project that 

aims at supporting multimedia-assisted distributed team work. It includes a subsystem 
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devoted to the provision over wide-area networks of multimedia content relevant to 

the work carried out by the team, such as audio/video recordings of group discussions 

and decisions, informational and educational events, etc. The application domain of 

election for AI2TV is long-distance education: the focus is on enabling the 

remotization of attendance and review of class lectures, group study, and 

collaborative team assignments, such as software development projects. AI2TV 

differs from many existing infrastructures for providing educational content in a 

networked context because of its explicit focus on supporting the team work aspects 

of on-line education.  

A number of speculative, design and technological challenges underlie the main 

AI2TV ideas. The issues that are most relevant to the work presented in this document 

lie mainly in between multimedia and Computer-Supported Collaborative Work 

(CSCW), in particular how dynamic software adaptation can aid multimedia-enabled 

computerized CSCW tools to meet their goal of efficiently and effectively supporting 

collaborative work practices. 

One of the most compelling requirements for AI2TV is the support for the 

synchronized watching of a streamed video by all members of a widely distributed 

team, independently of their different equipment and networking capabilities, 

including support for video operations like fast forward, rewind, seek, etc. 

Imagine a scenario in which the team decides to review together a portion of a 

recorded lecture, in order to solve some difficulty in their project assignment or to 

clarify some notion. Given that team members can be dispersed over the Internet, and 

may enjoy very diverse connectivity, ranging for example from 28.8k modem, to 
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DSL, to cable, to T1 lines, the multimedia content they must use for their review 

session is to be delivered over heterogeneous Internet links to heterogeneous 

platforms. Moreover, in such a setup the communication and computing resources 

available to each user may widely and quickly vary in the course of the team work 

session. In contrast with those potential difficulties, the collaboration can be effective 

only in case the fruition of the streamed video clip remains well-synchronized, so that 

users, who are enabled by their clients to discuss the material among each other as 

they see it, have a natural group experience (like they were co-located in class, or 

watching a tape together sitting in a study room) and do not incur in 

misunderstandings, waste of time, or other serious inconveniences during their review 

session. 

This kind of collaborative video sharing poses a twofold problem: first of all, it is 

mandatory to keep all users synchronized with respect to the content they are 

supposed to see at any moment during play time; furthermore, it is important to 

provide each individual user with a viewing experience that is adequate with respect 

to the user's available resources, which may also vary during the course of the video. 

The solution proposed is based on the one hand on offering multimedia content in 

multiple versions, with different levels of semantic compression, achieved by 

employing a semantic summarization package separately developed at Columbia 

University [184], and on the other hand on using the process / workflow technology 

made available by Workflakes to dynamically adapt content provision. 

Dynamic adaptation in this case is directed at modifying a combination of server and 

client configurations, data fetching and buffering strategies and video playing 
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schemes, to accommodate and harmonize varying latencies, throughputs, client 

processing power, and server work loads. All of that – as will become evident as the 

implementation of the case study is described - must be completed by Workflakes 

within narrow time boundaries (in the order of seconds or less), given the soft real-

time nature of the application and the kind of adaptation that must be effected. 

The one described above is the first possible application of process-based dynamic 

adaptation in the AI2TV system is termed the short-term or client synchronization 

workflow, to distinguish it from the other possible applications, which are introduced 

below. 

Another context in AI2TV, in which process / workflow technology plays a 

significant part is the organization of the work of the team as well as its individual 

members, in accord with an agenda containing a schedule of group events (e.g., 

virtual study “meetings”) and work deadlines. In AI2TV, a workflow is used to model 

and guide the activities of the distributed team along that planned schedule. The 

typology of that workflow is in general that of a classic human-oriented process, 

whose stakeholders are persons and whose goal is to facilitate and guide the 

collaboration among those persons; furthermore, the workflow is likely to span its 

activities across a relatively long term, i.e., in terms of weeks, days, or hours in the 

most demanding cases. That workflow is therefore called the long-term scheduling 

workflow. 

Given those characteristics, that kind of workflow is seemingly not concerned with 

any dynamic software adaptation issues. However, there are peculiarities intrinsic to 

the presence and use of multimedia content in the workflow that demand for the 
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introduction of dynamic adaptation aspects, which become intertwined with the 

coordination of team activities. 

Multimedia content must be treated by the workflow as both a new type of artifact 

and an additional kind of resource, albeit an expensive one, whose use must be 

carefully organized and managed. One thing this workflow must do is to plan and 

orchestrate the distribution of such multimedia artifacts to each individual team 

member in a timely fashion. Ideally, all needed artifacts would be entirely transferred 

to all clients in advance, before a planned event begins. That would avoid the need for 

streaming any information on the fly, and would thus largely circumvent the 

problems that require the intervention of the short-term synchronization workflow, at 

least for planned-ahead joint work events (for virtual meetings that are set up and 

initiated with no or little advance notice, the client synchronization workflow remains 

completely relevant). 

In the real world, the typical situation is likely to be somewhere in between the two 

extremes above. Given that, and also in the view of the high variability of the factors 

that may influence or hinder the ability to make available in advance the necessary 

artifacts, such as connectivity, servers, storage space in the clients, CPU load on 

clients, and more, there is a need for AI2TV to adapt on the fly even in the long-term 

context. That way it becomes possible to overcome connectivity and capability 

idiosyncrasies and maximize the amount of data that can be buffered in advance and 

that is hence immediately available to clients at the beginning of a group session. 

That can be resolved with a combination of content pre-fetching and caching 

techniques that are orchestrated via a pre-fetching workflow, which kicks in as part of 
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the long-term scheduling workflow. The pre-fetching workflow must also graciously 

turn control over to the synchronization workflow whenever a group session begins, 

for keeping in check and adapting the synchronized delivery and presentation of the 

material across clients. 

Besides the long- and the short- term, there is also a medium-term option for 

dynamically adapting the provision of multimedia content in AI2TV. That can occur 

whenever, during the synchronized fruition of some multimedia stream, the group 

decides to pause or interrupt the viewing. That opens a window of opportunity for 

loading additional material in clients’ buffers, taking advantage of the period in which 

network connections to the video server remain idle. The logic of this opportunistic 

pre-fetching workflow is akin to that of the long-term pre-fetching workflow, but it 

must operate within a time frame that is closer to that of the client synchronization 

workflow. 

Case study description 

The implementation of the AI2TV case study that is reported here is concerned only 

with the short-term client synchronization aspects. The other dynamic adaptation 

options related to content pre-fetching in the medium and long term, and how they 

relate to and interact with the short-term workflow, are the subjects of future work. 

The experimental work described here has focused on client synchronization since, 

because of the soft real-time constraints inherent to adaptive multimedia provisioning, 

it represents a particularly interesting and demanding field of application for dynamic 

software adaptation in general, and for its process-based orchestration in particular, as 

previously discussed in Section 3.3. 
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Notice also that in this particular case study Workflakes is employed on its own, 

without the other elements of the KX platform. The design of the control loop 

superimposed onto the AI2TV system still follows the conceptual architecture for 

externalized dynamic adaptation of . However, some simplifications have 

been used, for expediency of design: referring to the design schematic of the AI2TV 

system shown in Figure 15, customized sensors in the clients communicate with 

handcrafted gauges that are embedded together with the coordination engine. That 

simplification allows to minimize the communication latency between the various 

elements of the dynamic adaptation platform, which in turn allows to precisely 

determine the amount of time spent in the Workflakes controller, and its contribution 

to the timeliness of the adaptations (which is one of the intended results of the 

experiments with AI2TV). 

Figure 3

Besides the controller and the underlying event-based middleware (i.e., Siena [156]) 

used for distributed communications within the control loop, Figure 15 shows the 

video server and the AI2TV clients. 
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Figure 15: The AI2TV System. 

The video server makes available the educational video content to AI2TV clients. 

Such content has the form of a hierarchy of video versions produced with the 

semantic summarization tool mentioned previously. That tool operates on MPEG 

format videos and outputs sequences of JPG frames. Its semantic compression 

algorithm profiles video frames within a sliding time window and selects key frames 

that have the most semantic information. By increasing the size of the window, a key 

frame will represent a larger time slice, which means that a larger window size will 

produce less key frames as compared to a smaller window size setting, effectively 

increasing the level of semantic compression. By running the tool multiple times with 

settings for different compression levels, several sets of frames are produced, which 
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are indexed by a frame index file. The task of the video server is to provide to clients 

download access to the frames and the index file over HTTP. 

Notice that the various quality level produced that way are characterized by their 

different frame rates. Notice also that the semantic compression algorithm produces 

effectively a random distribution of key frames, hence the video produced by the 

package plays back at a variable frame rate. 

Clients participating in the same group are the subjects of the short-term adaptation. 

A group is limited in number, since user teams are assumed to be composed of 2-5 

users at least, and 10-12 at most. The task of each client is to acquire video frames, 

display them at the correct time, and provide a set of basic video functions. From a 

functional design perspective, the client is composed of three major modules: a time 

controller, a video buffer and manager for fetching and storing downloaded frames, 

and a video display. 

The time controller's task is to ensure that a common video clock is maintained across 

clients. It relies on NTP [185] to synchronize the system's software clock therefore 

ensuring a common time base for the group, which each client can reference. Using 

this foundation, the task of each client of displaying the client's needed frame at the 

correct time is simplified. Since all the clients refer to the same time base, then at any 

time all the clients are showing a semantically equivalent frame, unless some clients 

do not have it available at any quality level. 

The video buffer and manager constitute a downloading daemon that continuously 

downloads frames at a certain quality level. It keeps a hash of the available frames 

and a count of the current reserve frames (frames buffered) for each quality level. The 
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buffer manager also includes an actuation interface hook that enables the controller to 

adjust the current downloading quality level. 

The video display renders the frames into a window and provides a user interface 

with controls for play, pause, goto, and stop. When any participant initiates one of 

those actions, all the other group members receive the same command as a time-

stamped event. Referring to the common time base, all the video players can take 

action in a synchronized way so that results are consistent. Furthermore, the video 

display knows which frame to render at any time, by using the current video time and 

the current display quality level to retrieve into the frame index the representative 

frame. Before trying to render that frame, the video display asks the video buffer 

manager if it is available. The video display also includes an actuation interface that 

enables the autonomic controller, to adjust the current display quality level. 

Given how AI2TV clients are developed, a client at each given moment in time can be 

in two states with respect to synchronization,: it is either in sync, i.e., displaying the 

correct frame at some compression level with respect to the playing time of the video 

clip, or is lagging behind, i.e., missing in its buffer the correct frame that it should be 

displaying at that moment. 

Clients are also equipped with sensors that have been developed specifically for this 

case study. Those sensors report data such as video display quality level, the buffer 

quality level, the buffer reserve frames, the currently displayed frame and the current 

bandwidth. A gauge samples periodically (e.g., every second) that information from 

each client, and stores it into buckets, similarly to [186]: a full bucket is a complete 

 



150 

sample that represents a snapshot that reports the state of the whole client group at 

some moment in time; that sample is then transferred to the Workflakes controller. 

Workflakes uses each incoming sample as the basis for decision making: the data in 

the sample is evaluated by a set of helper functions that compute whether the users, 

albeit at different levels of semantic compression, are viewing equivalent 

informational content, in sync with the playing time of the video clip. They also 

estimate whether some clients, although in sync, may risk to lag behind in the future, 

given the current available resources and the current quality level, or – at the contrary 

- whether they have abundant resources that could be better exploited for enhancing 

the viewing experience. On that basis, decisions are taken about which clients must 

be adapted and in what way, and triggers for the adaptation process are produced. 

Therefore, in case the multimedia clients of some users in the group are at risk of 

“lagging behind” with respect to others, their buffer managers are instructed by the 

synchronization workflow to downgrade on the fly their content fetching to a level 

that is more compressed, and to start displaying from a certain frame within that 

level; that implies that in the most critical cases certain informational content may 

also be skipped. This trade-off of quality for timeliness is acceptable, given that, in 

the context and for the purposes of the AI2TV system, synchronization is arguably a 

more important quality factor for the user experience than content presentation, or 

even content integrity. Conversely, whenever for the helper functions a client results 

rather lightly loaded and able to keep pace without problems, the synchronization 

workflow may instruct it to upgrade its content fetching level and/or display level to a 

higher-quality, thus enhancing the user experience also with respect to content merits. 
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All of the above is repeated every time a full sample is produced by the gauges, 

therefore needs to be computed, coordinated and effected in a fraction of that 

sampling time. For that reason, the synchronization process cannot be over-

complicated, otherwise the time spent to execute the coordination process alone could 

become excessive. The key of this case study from the point of view of the process 

enactment facilities that fulfill the coordination role is to be able to orchestrate the 

necessary adaptation as efficiently as possible, and to repeat the same adaptation 

process frequently, rather than being able to represent and enact a very involved and 

sophisticated coordination process. An implied challenge is to produce with a simple 

process the rather complex effect of synchronizing the group of dispersed AI2TV 

clients, while at the same time optimizing the viewing experience for each of them. 

The process of this case study is shown in Figure 16 as a Little-JIL diagram. 
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Figure 16: The AI2TV process in Little-JIL. 

The task decomposition hierarchy employed for that dynamic adaptation is 

structurally simple. One reason is that it does not need to account for particular 

contingencies, either internal or external; any failure in adapting some client – 

although may result in temporary degradation of the behavior of the group - can be 

recovered the next time the process is executed. Thus, the process does not need to 

provide specific flows for handling exceptional conditions or implementing 

compensations. One subtlety is how the parallel enactment of multiple instances of 

the EvaluateClient and AdaptClient tasks is determined dynamically, depending on 

the state and number of clients in the group, as signified by the clients+ label on the 

transition arcs. It is noticeable how the native semantics of the Little-JIL language 
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supports that aspect in a very simple way, by allowing to bind the arc connecting a 

parallel step with some sub-step to a resource collection (called clients in this case, 

and representing the group of AI2TV clients). The cardinality of that resource 

collection is evaluated on the fly when expanding the parallel step, and determines the 

number of instances of the sub-step that are enacted. 

Case study results 

The results of the experiments described above have been evaluated as part of the 

work carried out on the AI2TV case study. The collection and evaluation of the results 

of the AI2TV case study is aimed at verifying two aspects related to the client 

synchronization workflow: 

• that process-based coordination of dynamic adaptation can be a suitable approach 

for target systems that have soft real-time constraints, even when those constraints 

are demanding as those of distributed multimedia systems; 

• that when the coordination is correctly enacted within those time boundaries, an 

externalized dynamic adaptation platform superimposed on a soft real-time target 

is in fact able to enforce the desired behavior of that target system and 

significantly improve its quality of service. 

The nature of the dynamic adaptation application in this case study enabled the 

collection and analysis of a wealth of quantitative data, measuring those two aspects 

during a number of AI2TV trail runs. The trail runs involved teams having from 1 to 

5, and as many as 10 participating clients, with wide variations in networking 

resources assigned to the link between each client and the video server.  
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With respect to the first aspect, i.e., making sure that the client synchronization 

workflow performs within the time boundaries required, that is, with a turn-around 

time that is significantly less than the sample time of the gauge that feeds the 

workflow, timestamps have been taken on the beginning and end of all the tasks in 

the workflow. As a result, the diagram in  shows the average total execution 

time for the workflow, in trail runs involving 1, 2, 3, 4, 5, and 10 clients in the same 

group. The execution time displayed includes not only the time for the enactment of 

the process within the Workflakes engine, but also the time spent within the 

computational helper functions employed for decision-making, and invoked at 

different junctures in the orchestration process. 

Figure 17

Figure 17: AI2TV - execution time of the adaptation process. 

 

The data suggests that the execution time of the client synchronization workflow 

gauge occurs quickly enough to correct any clients that may be drifting out of sync in 

a prompt manner, and is sufficiently short to accommodate a sampling frequency of 1 

second or less. That frequency seems adequate for a fine-grained control of group 

synchronization, at least in an educational context, in which images tend to have a 
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relatively low change rate. Therefore, it is possible to state that the experimental data 

is complaint with the timeliness requirements of the AI2TV group video viewing. 

Verifying whether dynamic adaptation improves significantly the quality of the target 

system was a more complicated affair, since the elaboration of an appropriate 

reference model of the QoS parameters relevant for the case study, with the 

corresponding metrics, was needed. 

In [74], a survey and taxonomy of approaches to adapting Internet-wide video 

multicast is proposed. Although AI2TV currently does not employ network 

multicasting protocols to deliver content to a team (it resorts instead to what is 

defined in [74] as multiple-unicast), the classification of approaches proposed in that 

survey is still helpful to characterize the kind of dynamic adaptation exerted in the 

AITV case study. Such classification is layered adaptation, since the case study 

couples multi-rate video delivery with end-to-end adaptation. The multiple levels of 

semantic compression of the content source in AI2TV can be seen as a form of 

cumulative layering [75], also known as scalable coding [76]: those approaches to 

compression provide multiple versions of content, codified with different encodings 

of incremental quality levels (in our case with different frame rates), among which 

clients can choose. Moreover, the adaptation requires the monitoring and effecting of 

only the end points of the communication, without influencing in any way the 

intermediate nodes of the transport network and their behavior; finally, the adaptation 

mechanism according to which AI2TV clients move up and down the hierarchy of 

compression levels can be characterized as receiver-driven since it depends from the 

monitoring of the clients’ state. 
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Experimentation on adaptive video multicast is still in its infancy; moreover, layered 

adaptation schemes in particular have been rarely used to date (although they look 

promising in the near term, as research on scalable coding is becoming mature). Even 

more importantly, the principal quality factors to be evaluated are not consistent with 

the purposed of the AI2TV case study: while the major concern of multicasting is 

achieving optimal viewing experience for the users, coupled with fairness in the data 

delivery to all of the various transmission end points, in AI2TV the individual viewing 

experience must be reconciled instead with inter-client synchronization.  

Because of the lack of standard evaluation procedures and data sets, and the lack of 

consistency in the quality factors to be measured, while it is possible to evaluate the 

effects of Workflakes in the AI2TV case study with respect to a situation where no 

dynamic adaptation is applied, it would be hard to compare the benefits that can be 

observed in that case study with those achieved in equivalent experiments that use 

other approaches. 

The evaluation of the AI2TV case study, considers two different aspects: synchrony 

and Quality of Service (specifically, frame rate, because of the nature of the 

compression scheme adopted). That evaluation is carried out in a comparative way, 

with respect to a situation against which the performance of the dynamic adaptation 

approach can be consistently compared. To that end, a baseline client is used, whose 

quality level is set at the beginning of the video and not changed thereafter. To define 

the baseline client, a parameter that describes the average bandwidth per level is 

computed, by summing the total size in bytes of all frames produced at a certain 

compression level and dividing by the total video time. This value provides the 
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bandwidth needed on average for the buffer manager to download the next frame on 

time at that level. We provide the baseline client with the needed bandwidth for its 

chosen level by using a bandwidth throttling tool [187] that adjusts the bandwidth of 

the link to the video server. Notice that using the average as the baseline does not 

account for changes in the video frame rate and fluctuations in network bandwidth, 

which are situations in which adaptive control is supposed to make a difference. 

When carrying out the evaluation, each controller-assisted client is assigned an initial 

level in the compression hierarchy and the same bandwidth as the baseline client for 

that hierarchy level. At the end of each experiment, we record any differences, with 

respect to synchrony and frame rate, between the adaptation of the clients' behavior 

on the part of Workflakes, and the behavior of the baseline client. 

To evaluate synchrony, clients log at periodic time intervals the frame currently being 

displayed. This procedure effectively takes a snapshot of the system. This evaluation 

proceeds by checking whether the frame being displayed at a certain time corresponds 

to one of the valid frames at that time, on any arbitrary level according to the layered 

compression scheme. Arbitrary levels are allowed, because the semantic compression 

algorithm ensures that all frames at different levels for a certain time will contain the 

same semantic information if the semantic windows overlap. The system is then 

scored, by summing the number of clients not showing an acceptable frame and 

normalizing over the total number of clients in the group: a score of 0 indicates a 

synchronized group. 

Our experiments for the evaluation of synchronization initially involved groups of 

clients that were set to begin playing a test video at different levels in the 
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compression hierarchy, and were assigned the corresponding baseline bandwidth. In 

those experiments, the results show a total score of 0 for all trials, with as well as 

without the supervision of Workflakes. Also, no frames were missed. This result 

demonstrates that the chosen baseline combinations of compression levels and 

throttled bandwidths do not push the clients beyond their bandwidth resource 

capacity, notwithstanding the variations in the frame rate and/or occasional 

fluctuations in the actual bandwidth of the clients,  

We also ran a different set of experiments related to synchrony, in which the clients in 

the group were assigned more casually selected levels of starting bandwidths. This 

casual selection is representative of some real world situations, in which users must 

choose a desired frame rate to receive multimedia streams (typically, about the 

nominal bandwidth offered by their service provider) which may however differ 

considerably from the bandwidth actually available on that connection. We ran this 

set of experiments first without the aid of the controller and then with it. In the former 

case, clients with insufficient bandwidth were of course stuck at the compression 

level originally selected, and thus missed an average of 63% of the needed frames. In 

the latter case, the same clients only missed 35% of the needed frames, because of the 

intervention by Workflakes, which tried to re-assign them to more adequate 

compression levels for their actual bandwidth. These results provide evidence of the 

benefits of the adaptive scheme implemented by the Workflakes controller. Figure 18 

shows the statistics of the missed frames for all the experiments: in total 26 trial runs 

were carried out, but only some of them reported non-0 values for the count of missed 

frames. 
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Figure 18: AI2TV - missed frames count.  

The other major goal of dynamic adaptation in the AI2TV case study is to provide 

each client with an enhanced viewing experience, via adjustments to the compression 

level and hence the video frame rate. To attain a quantitative measure of the quality of 

service provided by a client assisted by Workflakes, a scoring system relative to the 

baseline client's quality level is used, with weighted scores for each level above or 

below the baseline quality level. The weighted score is calculated as the ratio of the 

frame rate of the two levels. For example, if a client is enabled via dynamic adapation 

to play at one level higher then the baseline, and the baseline plays at an average N 

frame per second (fps) while the higher level plays at 2*N fps, the given score for 

playing at the higher level is 2. Theoretically, the baseline client should receive a 

score of 1. The weights are thus calculated as a proportion between the average frame 

rates of the various quality levels, which makes the scoring system sensitive to the 

relative quality difference between layers in the compression scheme.  Figure 19
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shows the distribution of bonuses and penalties in the scoring system adopted: 

consider that the layered compression scheme employed in the case study has five 

Figure 19

layers. 

: AI2TV - score distribution. 

 for the evaluation of quality of service using the 

Score Distributions

-15

-10

-5

0

5

10

15

-1 0 1 2 3 4 5

Quality Level

Sc
or

e

The results of the trial runs used

scoring system explained above show that the baseline clients scored an average 

group score of 1 in the various trial runs (as expected) while the clients adapted by 

Workflakes scored a group score of 1.25. The one-tailed t-score of this difference is 

3.01 which is significant for an alpha value of .005 (N=17). That demonstrates with 

confidence that the dynamic adaptation orchestrated by the Workflakes controller is 

able to achieve a statistically significant positive difference in the quality of services. 

Note that the t-score does not measure the degree of the positive difference achieved 

by the autonomic controller. To measure the degree of benefit provided by 
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Workflakes, the proportion of additional frames that each adapted client is able to 

enjoy is measured. Overall, those clients received 20.4% more frames then the clients 

operating at a baseline rate (with a standard variation of 9.7). The benefits brought 

about by the introduction dynamic adaptation are visually evident in Figure 20, which 

shows the statistics of the weighted score for the baseline experiment

When considering all the test runs, that is, also those in which the allot

s. 

was chosen casually, the difference of the weighted score i

Figure 20: AI2TV - weighted score differences for baseline trial runs. 
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adapted clients becomes even more significant, as evident from the bar graph of 

Figure 21. In particular, it is noticeable how the score of trial runs with no controller 
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which bandwidth is chosen casually are also provided

rops significantly, while the score of controllers assisted trial runs decreases 

only a little, and remains well above 1. 

For completeness, the statistics of the 

Figure 21: AI2TV - comparison of average weighted scores. 
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Figure 22: AI2TV - weighted score differences for non-baseline trial runs. 

The act of running the client at compression levels that require more bandwidth than 

the baseline level puts of course the client at risk of missing more frames, because the 

controller is trying to push the client to a better, but more resource-demanding, level. 

To measure whether the Workflakes-adapted clients are exposed to a higher risk of 

missing frames, the number of missed frames during a video session in those 

conditions was also counted. From that assessment of the risk of enhancing the frame 

rate of the clients, there was only one instance found, in which a Workflakes-adapted 

client missed two consecutive frames. Upon closer inspection, the time region during 

this event showed that the video demanded a higher frame rate while the network 

bandwidth assigned to that client was relatively low. The client was able to 

consistently maintain a high video quality level without skipping frames after that 

event. 
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The data reported from these experiments indicates how the Workflakes controller 

makes a significant positive difference in aiding the client to achieve a higher-quality 

viewing experience (all the while keeping clients in the group in sync), in two 

respects: less missed frames when bandwidth conditions are dire, and better video 

quality (i.e., frame rate) with respect to the available resources of each client. Note 

how the count of missed frame is kept separate from the weighted score of quality 

levels, to discriminate between levels of concern, though they both indicate a 

characteristic of quality of service. 

An important qualitative consideration that supplements and in some way completes 

the above mentioned quantitative findings derives from an observation about the 

structural simplicity of the dynamic adaptation process employed for the short-term 

synchronization workflow. A process that (in the chosen process formalism) can be 

expressed in a rather straightforward and compact way is able to orchestrate 

effectively significantly complex effects on an ensemble of distributed and 

independent software components, such as those required to solve the problem of 

synchronized multimedia delivery to multiple recipients. 

In the end, it may be interesting to compare and contrast the use and results of 

Workflakes in the AI2TV case study with works that presents similarities. 

QFabric [38] describes an internalized system for end-to-end management and 

adaptation of the QoS in soft real-time systems like multimedia conferencing. 

QFabric integrates resource managers in the operating system kernel and adapters in 

the application, which can therefore collaborate towards the same QoS goals. QFabric 

is based on the exchange of publish/subscribe events among kernel as well as 
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application-level entities involved in its target system; it uses the Event-Action 

paradigm to describe its adaptations, as reactions to specific monitoring or steering 

events. The work focuses mainly on the description of the abovementioned 

collaborative mechanisms and on how the infrastructure makes them available; no 

specific attention is devoted to how one could specify and automate on top of those 

mechanisms some policies that would guide the adaptation across the whole of the 

target system. In that light, QFabric and Workflakes could be seen as complementary, 

with Workflakes providing the means for policy specification and enactment through 

the use of process technology, and thus fulfilling the decision and coordination role of 

dynamic adaptation, while QFabric could provide the infrastructure to accommodate 

the monitoring, diagnostics and actuation roles. 

This case study can also be compared with an earlier implementation of AI2TV, 

which is described in [188]. In that version, a 3-D Collaborative Virtual Environment 

(CVE) called CHIME [189] was employed to support a variety of interactions of the 

study team, with the optional video display embedded in the wall of a CVE “room”. 

The same semantic compression capability was used. Video synchronization data was 

piggybacked on top of the UDP peer-to-peer communication that was used at the 

same time for CVE updates, such as tracking avatar movements or other scene 

changes, in the style of multi-player 3D gaming. In that implementation, the video 

synchronization did not work very well, due to the heavy burden caused by the CVE 

on client resources; also, in that framework video quality optimization was not 

addressed. The new implementation of the case study presented here can run 

alongside the CVE in a separate window, and, thanks to the dynamic adaptation 
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superimposed by using Workflakes, can enhance both the group synchronization and 

the quality of service aspects. 

5.3 GeoWorlds 

GeoWorlds [168] is a strongly decentralized and componentized Internet-scale 

Information System, developed at the Information Science Institute (ISI) of the 

University of Southern California, which provides Geophysical Information 

integrated with Digital Library features. It is in experimental use for intelligence 

analysis at US Pacific Command (PACOM). GeoWorlds is built out of a distributed 

set of services glued together by Jini [165], which are employed to run complex 

information gathering jobs, expressed as GeoWorlds scripts. 

Forms of dynamic adaptation applied to GeoWorlds have varied from service 

parameter modification, to component repair, to architecture-level reconfiguration, 

such as service migration. The latter is discussed in more detail in the remainder of 

this Section. 

A number of different GeoWorlds execution scripts rely on computationally-intensive 

backend services, one of which is a noun phraser that analyzes incoming news articles 

and extract nouns for mapping onto geographical locations. That component is very 

commonly and heavily used by most GeoWorlds scripts. When the computational 

load due to noun extraction requests can potentially become excessive on a certain 

host, relocation is desirable to maximize performance or even avoid crashes. 

Therefore, in this case study, dynamic adaptations that would relocate the noun 

phraser, and more in general any GeoWorlds components were put in place, taking 

also advantage of the inherent re-locability of Jini services. Sensors measuring the 
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overall computational load of hosts were developed, together with an architectural 

description of GeoWorlds, which specifies constraints for host machines and services 

residing upon those hosts. During the execution of the various services, if the load 

exceeded a predetermined threshold for a predefined period of time, gauges in the 

diagnostic layer of KX would detect and report it as a violation of those constraints. 

That would trigger a repair that entails moving the services on the overloaded host to 

a different Jini-enabled host that can accept the extra load. 

Additional logic was also developed, to detect and avoid “oscillation” situations, in 

which multiple re-locations would occur in a short time span, and would cause 

services to move back and forth between two hosts. In such a case one of two meta-

repairs could be taken: either the invalidation of the re-location repair strategy 

altogether, or the tuning of the overload threshold and/or period parameters of the 

gauges in charge to detect the overload condition. Both of those remedies represent 

cases of meta-adaptation, in which the dynamic adaptation platform (i.e., KX) itself is 

adapted, to better support the requirements presented by the target system. 

One particularly interesting trait in this case study was that – in part building upon the 

experience gathered the IM case study of Section 5.1 – the GeoWorlds models were 

formally expressed with Architectural Description Languages (ADLs), and integrated 

within the dynamic adaptation loop, instead of using a proprietary format. The ABLE 

tool set [54] by CMU provided a formal model of GeoWorlds – including the afore 

mentioned constraints - to KX, in particular to its analysis and decision layers. The 

knowledge captured by ABLE was explicated as a set of descriptions in the Acme 

ADL [166] and maintained with the AcmeStudio editing tool [167]. Moreover, using 
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the AcmeStudio’s dynamic visualization tools included in ABLE, it was possible to 

follow variations in the load and service state, and watch the feedback loop in action, 

in concert with the architectural model.  

That juxtaposition of architectural representations and the corresponding 

implementation-level elements  the GeoWorlds case study showed the potential of 

being able to clearly and rigorously express, reason about, validate and audit the 

characteristics and the effects of the modifications caused by dynamic adaptation. A 

difficulty that was only partially resolved in the case study was a degree of 

disconnection between the architectural model of the target system and its 

implementation counterpart in the run-time environment. Elements in the 

architectural model were not originally meant to be associated to and actually identify 

with deployed target system components. As a consequence, the need for precise 

bindings (such as those described for instance in [61]) between components and 

connectors in the architectural model and the runtime entities that reify the 

architecture in the field was observed. Such bindings can greatly simplify the 

integration of ADL-based tools at all layers of our dynamic adaptation infrastructure. 

5.4 Web services marketplace 

The IM case study described in Section 5.1 was developed in part within the context 

of a collaborative international project funded by EURESCOM 

(http://www.eurescom.de). The case study described in this Section was also carried 

out in the same project, by different project partners. Its description in full detail is 

available elsewhere [67], and its complete evaluation results are not available in this 

 

http://www.eurescom.de/
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document, since they represent confidential information belonging to the 

organizations that carried out the experiment. 

The subject of this case study is a prototype of an adaptive electronic marketplace for 

the selection, negotiation and composition of Web Services applications. Said 

marketplace interfaces with a number of service components implemented and made 

available by multiple providers as Web Services, and offers to assemble complex 

services starting from scripted service chains. 

The dynamic adaptation regards as its target system the core of the marketplace, 

which operates as a mediator and a composer, but the platform also monitors the 

basic functioning parameters of participating Web Services (such as availability, 

responsiveness, transaction completion ratio, etc.), analyzes their accumulated 

performance, and uses this information to adapt the behavior of the mediator in the 

marketplace The goal of the process-based coordinator in this case study is threefold: 

• to automate the deployment of the core components of the marketplace; 

• to intervene in the case of a failure of those components, and re-start them, in 

order to ensure the continuous availability of the marketplace;  

• to modify on the fly the parameters informing the selection component of the 

marketplace, based on diagnostic information collected from the performance 

history of the external Web Service known to the marketplace. 

The third aspect is of particular interest because it differs from the others, which are 

related to typical concerns of dynamic software adaptation, such as automated 

configuration and fault recovery; it borders instead on the issue of supporting 

dynamic software composition (see Section 2.4). By putting in place adaptive 
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mechanisms that can be used in selecting service providers for composing the service 

chains, it effectively provides the mediator component with the capability of tuning 

its match-making and selection of Web Services that take part in a given composed 

service. The final goal this kind of adaptation responds to (and the rationale guiding 

this case study) is to ensure compliance with requirements that may be set for the 

composed services, thus enhancing customers’ satisfaction. 
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6 Evaluation 

It may be useful at this stage to recall the two main working hypotheses from which 

this research described herein derives, as originally stated in Section 1: 

H1) It is feasible and effective to employ an externalized infrastructure to retrofit 

pre-existing software systems and components thereof with dynamic 

adaptation features.  

H2) Decentralized process technology provides a convenient and effective means 

to exert sophisticated forms of coordination and control over complex 

distributed software applications, such as those required by dynamic 

adaptation. 

The first hypothesis has a lot to do with the general concept as well as the 

implementation of an externalized dynamic adaptation platform at large. This 

research, which concentrates on the coordination role of such a platform, can of 

course validate that hypothesis to the extent in which the coordination role is central 

to externalized dynamic adaptation, and inextricably tied to its other roles. On the 

other hand, having in place a dynamic adaptation loop, like KX, in its entirety 

evidently represents a prerequisite for experimenting with a process-based 

coordinator like Workflakes. Therefore, any positive or negative experience with the 

coordinator is immediately reflected upon the success or shortcomings of the entire 

platform to exert dynamic adaptation, and vice versa. 

Some effectiveness and benefits indicators that can be applied to the evaluation of the 

hypothesis H1 can be broadly categorized as follows: 
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• Impact on the management practice related to the target system (for example 

in terms of effort and costs). 

• Impact on the run-time behavior, performance and quality factors of the target 

system. 

• Impact on the development of the target system (or, in the case of legacy 

target systems, feasibility of the approach without any impact). 

• Adaptation reach and granularity that can be achieved. 

The aspects listed above will be considered in Section 6.2, for framing and 

interpreting the results of the evaluation of Workflakes with respect to working 

hypothesis H1. 

Any benefits related to the aspects above could in principle be measured relatively, 

that is, against those provided by alternatives approaches to dynamic adaptation, in 

particular, in this case, internalized approaches. However, there are several serious 

difficulties to accomplish that kind of comparison. One difficulty descends directly 

from the externalized stance taken by this research: externalized dynamic adaptation 

is concerned principally with retro-fitting legacy or other third-party software systems 

with adaptive capabilities. As a consequence, the legacy software that was selected 

for those experiments did not exhibit any intrinsic adaptive features. 

There are also more fundamental difficulties that hinder relative evaluation. First of 

all, the lack of an agreement upon baselines for the evaluation of adaptive or 

autonomic capabilities in software systems: given the relative novelty of the field, 

there is no accepted or even proposed base experiment (or set thereof), upon which to 

compare different approaches and implementations. That is in turn a consequence of 
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the wide scope and reach of studies and results in the field, which aim at improving 

software systems in many different, heterogeneous quality areas. 

For all of those reasons, it is more feasible to measure the benefits brought about by 

applying dynamic adaptation in absolute terms, that is, against a situation in which no 

adaptation whatsoever is exerted upon the same legacy system. That is particularly 

true for externalized approaches, which can be easily turned off or plugged in at will, 

and is the general approach taken in this work. In Section 6.3, the opportunity of 

overcoming the lack of a proper evaluation framework for initiatives that deal with 

the problem spectrum of dynamic software adaptation and, in general, autonomic 

computing is discussed. 

The evaluation related to the second hypothesis looks at how well process technology 

is able in the cases at hand to describe, support and automate software coordination 

plans for dynamic adaptation. Also that evaluation is carried out here in absolute 

terms, for reasons similar to those explained for hypothesis H1: in particular, there is 

no sufficient accumulated experience in the dynamic adaptation field, to establish 

consistent benchmarks or canonical experiments against which multiple alternative 

approaches (in this case, coordination paradigms) can be compared. 

Among the indications of the effectiveness of a process-oriented approach to 

coordination of dynamic adaptation there can be aspects such as: 

• The effort needed to specify the coordination policies of software dynamic 

adaptation in terms of a process / workflow.  

• The level of sophistication and complexity of those coordination policies that 

can be feasibly handled. 
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• The level of efficiency of the runtime support enacting and automating that 

coordination policy. 

• The range of problems that can be expressed and addressed. 

The aspects listed above will be considered in Section 6.2, for framing and 

interpreting the results of the evaluation of Workflakes with respect to work 

hypothesis H2. 

6.1 Assessment of the experiments 

To weigh the value and the potential benefits of the ideas as well as the system 

developed in this research, one natural way is to look at the experiments that have 

been carried out, and described in Section 5. From their findings and results, it may 

be possible to infer a certain set of contributions, and a number of claims that can be 

made on the basis of those contributions. Those can in turn be related to some of the 

major issues in externalized dynamic adaptation, and, more specifically, about its 

coordination role. 

The table in Figure 23 summarizes the case studies described in Section 5: it classifies 

the kind of dynamic adaptation they provide, according to the four major concerns of 

autonomic computing (configuration, healing, optimization and protection); 

additionally, for each of those case studies, it also displays the kind of impact that 

dynamic adaptation is intended to have on its corresponding target system.  

From the Table, it is visible that the dynamic adaptation exerted in the case studies 

significantly covers many different concerns that are relevant in the field, with the 

exception of protection / security issues. The recent SABER work [159], however, 

represents an effort to extend that coverage, since it proposes to employ the concepts 
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that have guided the development of KX and Workflakes, as well as the experience 

and results that derived from those works, to address security and survivability issues. 

Therefore, it appears that the lack of application of this research to protection may be 

incidental, rather than principled. 

A first conclusion that can be drawn and a first claim that can be made is therefore 

that the approach that is pursued by this research is sufficiently general to apply to the 

majority of contexts and scenarios that are envisioned for dynamic software 

adaptation. 

A similar analysis can also be made with respect to the typology of the target systems 

used in the various experiments, aiming at showing the suitability of certain 

categories of system for the proposed approach to dynamic adaptation. Various target 

system categorizations can be drawn, according to different dimensions. In the Tables 

displayed in ,  and , three orthogonal dimensions are 

used, referring to the degree of distribution, the real-time characteristics, and the 

distributed computing infrastructure layer upon which the target system mainly 

operates. 

Figure 24 Figure 25 Figure 26
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Distribution Case Study 

LAN Corporate WAN Extranet Internet 

IM        

AI2TV      

GeoWorlds      

Web Services 

Marketplace 
      

Figure 24: Classification of experiments (distribution dimension). 

Figure 24With respect to the distribution dimension shown in the Table of , the 

conducted experiments demonstrate a sufficiently complete coverage across its 

spectrum. No target system in any experiment specifically operates on a LAN, but the 

issues that are typically present in a LAN are generally subsumed by those that can be 

found in a Corporate WAN or in an inter-organizational Extranet, which are both 

covered in the experiments set. 

It is noticeable that in the GeoWorlds experiment, the architecture-level adaptations 

were in fact experimented with across the Internet at large, with the Workflakes 

engine sitting in Italy, and the other KX components, as well as the hosts where 

adapted GeoWorlds services were running, situated instead in New York (in the PSL 

laboratory of Columbia University), California (in the ISI facilities of the University 

of Southern California), and, in one occasion (for the Demonstration Days of the 

DARPA DASADA program) in Baltimore, Maryland,. The only noticeable effect of 

such a widespread configuration were – understandably - rather long delays in the 
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flow of communication throughout the dynamic adaptation loop, and consequently in 

its end-to-end response time. Given the non-real-time nature of the adaptations 

carried out and of the GeoWorlds system at large, those delays did not represent a 

critical issue. 

Timeliness Case Study 

No real-time Soft real-time Hard real-time 

IM     

AI2TV     

GeoWorlds     

Web Services 

Marketplace 
    

Figure 25: Classification of experiments (real-time). 

Figure 25In fact, as shown by the Table in , timeliness requirements are not present in 

any of the experiments, with the exception of AI2TV, in which soft real-time aspects 

of dynamic software adaptation were purposely investigated (see Section 5.2). The 

available experimental data provides evidence that an externalized and process-based 

dynamic adaptation approach can be effective also for target systems that have soft 

real-time requirements, whereas it cannot shed light on hard real-time systems. For 

them, the principled objections outlined in the discussion about timeliness of Section 

3.3, for instance regarding the highly variable delays that could be induced by the 

response time of the externalized control loop, remain valid. 
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Case Study Operation Layer 

Service / Appl. Middleware Data O.S. Networking 

    IM  

 AI2TV     

  GeoWorlds    

Web Services 

Marketplace 
     

 

Legend: 

 Target system operates at this layer 

 Dynamic adaptation occurs at this layer
 

Figure 26: Classification of experiments (main operation layer). 

The Table in Figure 26 lists different layers that are recognizable in a typical 

distributed computing infrastructure. As it is evident by simply looking at the works 

reported in the issue of the IBM Systems Journal devoted to autonomic computing 

[77], dynamic adaptation, in some of its many possible incarnations, appears to apply 

to software systems and components operating on all of those layers. Adaptation can 

start from the bottom with the network transmission layer [78], and move up to the 

topmost layer, where user applications operate and provide their services [81], 

through the intermediate layers represented by operating system [80], data storage 

and management [79] and middleware [82], including application server architectures 

[83]. 
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The Table shows how the examples selected to validate Workflakes mostly 

concentrate upon target systems whose main area of operation is the application layer. 

That can be explained in two ways: firstly, the higher the distributed computing layer 

at which target elements operate (that is, the closer to the application layer), the easier 

is in general to have available and leverage open interfaces that enable the essential 

monitoring and actuation roles of the dynamic adaptation platform; on the contrary, 

the lower layers may remain partially or completely hidden, and are likely to be used 

in a black-box fashion by services at the higher layers. Furthermore, it is in general 

easier to elicit the requirements and estimate the impact of dynamic adaptation for 

target systems that must deliver some tangible service to end users. As a 

consequence, also the dynamic adaptation exerted on the selected targets impacts 

mainly the same layer. However, as shown in the Table, certain adaptations that are 

necessary to bring forth benefits onto the main operation layer of the target system are 

sometimes carried out also upon different layers. 

The only area where no investigation was carried out in the context of this work was 

the operating system layer. That can be seen as a consequence of the externalized 

stance of the dynamic adaptation solution proposed: adding some adaptive features to 

an operating system from the outside would imply that a program that is executed in a 

non-privileged mode could acquire some deal of runtime control and influence upon 

the innards of the operating system, which is something that is generally not 

recommended. Operating systems represent a domain in which internalized 

mechanisms are more adequate to achieve adaptation capabilities, either statically, for 

instance through extensibility, like in [84] or [85], or dynamically, like in [86]. 
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Considering all of the above, the experiments sufficiently show that the described 

approach can be applied to dynamically adapt most of the major recognizable 

elements that constitute a typical environment for distributed software applications 

and services. Given the nature of the experiments, however, dynamic adaptation at 

the middleware and data layers could be only partially explored. 

Only one experiment focuses specifically on middleware issues; among the selected 

target systems, some of the others do not rely on a significant amount of middleware 

software, while for others still the presence of middleware is completely transparent 

and remains orthogonal to dynamic adaptation issues. From the literature, however, it 

is possible to derive ample evidence about the applicability of dynamic adaptation at 

the middleware layer. For example, investigation of reflective middleware [93] (i.e., 

how middleware can dynamically adapt itself, in addition to applications that run 

upon it) has granted – among other results - a number of International Workshops 

[87] [88] and a permanent space in the IEEE Journal on Distributed Systems Online 

[89]. Moreover, some reflective features promoted by research, like [2] for reflective 

Object Request Brokers (ORBs), are beginning to be accepted more widely even in 

commercial middleware platforms. 

In fact, run-time adjustments to the middleware platform upon which an application is 

built are a powerful way to cause system-wide effects on that application. Reflective 

middleware can achieve that, in a way that is in line with the idea of internalized 

adaptation; externalized adaptation impacting the middleware layer, for example 

through one or more “autonomic services” that can be plugged onto a generic 

middleware core and that encapsulate dynamic adaptation roles, is a specific research 
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thread that deserves to be further investigated. The orchestration capabilities of such 

an approach could be possibly developed by building upon and extending workflow 

capabilities that are being already incorporated within certain middleware platforms, 

such as Grid computing [50] [92] and Web Services [94] [95]. Those workflow 

capabilities are however currently oriented principally towards the domain of 

automated, on-the-fly service composition, as discussed in Section 2.4, and 

exemplified to an extent by the Web Services marketplace case study described in 

Section 5.4. 

Regarding dynamic adaptation at the data layer, the presented experiments treat their 

data sources mainly as a black box; therefore, their dynamic adaptation is either not 

concerned with the data layer at all, or exerted simply upon the interface of 

application components with data management and storage components. Dynamic 

adaptation regarding directly the latter is not considered. 

Adaptation issues like query distribution schemes [90], adaptive caching [91] and 

learning query optimizers [79] constitute specialized forms of run-time database 

optimization, which are actively investigated within the database community and can 

be implemented within database systems. Were they available and exposed through 

an appropriate actuation interface by some data storage and management components, 

there would be no principled reason why those features could not be exploited by an 

externalized coordinator for the end-to-end adaptation of some target systems, in 

particularly data-intensive applications. 
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6.2 Assessment of the Workflakes system 

All the case studies aim at validating the effectiveness of the process-based 

Workflakes controller, by measuring quantitative or qualitative benefits to the target 

applications put under its control. Those benefits, which are listed in the rightmost 

column of the Table in Figure 23, contribute towards the evaluation of the 

Workflakes system with respect to the two main working hypotheses previously 

remarked. Each case study and each result highlights one or more aspects pertaining 

to the working hypotheses and they can be classified and weighed accordingly. 

The results of the various case studies are presented in detail in Section 5. Among the 

case studies, the two major ones (IM, see Section 5.1, and AI2TV, see Section 5.2) 

provide quantitative measures as well as qualitative considerations. For the others, 

only qualitative observations are available. Those other case studies are reported 

principally because they reinforce with different examples some of the results 

observed in the two major ones, and also because they provide some degree of 

diversity, since (as shown in Section 6.1) they in part deal with different application 

domains, address different aspects of the autonomic computing field, or operate on 

different layers of the distributed computing environment of their target systems. 

This Section intends to discuss the significance of the reported results, relative to the 

working hypotheses and limited to the two major case studies. As a prologue to that 

discussion, a comparison between the different process-based facilities used for the 

IM vs. the AI2TV case study (Version 1 vs. Version 2 of Workflakes, respectively 

presented in Section 4.1 and 4.2) is hereby established, since it represents an 

additional result of the experimental work. 
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Coding vs. Modeling Dynamic Adaptation Processes 

The IM case study was carried out with Workflakes Version 1; the AI2TV case study, 

instead, represented the first application of Workflakes Version 2. There is value in 

comparing those two releases, to gain an understanding of the implications deriving 

from their different ways to develop and represent processes that orchestrate dynamic 

adaptation. Version 1 comported coding processes directly in a programming 

language, such as Java (although through the process specification paradigm and the 

corresponding libraries offered natively by Cougaar, plus the coding patterns that 

Workflakes Version 1 makes available on top of them, via shell plugins and process 

definition junctions). In Version 2, the process is modeled in an abstract and 

dedicated formalism that is substantially diverse and separated from the code in the 

runtime engine that interprets and executes that process. 

One important preliminary observation is that in the IM experiment, the coordination 

process is considerably more involved than in the AI2TV experiment. That is natural, 

considering the different natures and purposes of those two processes. The IM 

process essentially captures and automates system management procedures that must 

be enacted according to a situational logic; since the various target components 

impacted by the adaptation process are tightly dependent on each other for the 

delivery of the overall service, each phase of that process is also dependent on the 

outcome of other phases, and may incur internal as well as external contingencies that 

need to be properly accounted for. The AI2TV process, instead, captures a 

synchronization scheme that needs simply to be executed from start to end 

periodically. Although the ultimate goal of the dynamic adaptation of AI2TV is to 
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keep multiple clients synchronized, the single adaptations that may be necessary for 

the various clients do not have cross-dependencies that may influence each other. In 

case an adaptation does not work out as expected on one or more clients at some 

point, no particular disruption to the rest of the system occurs, besides sub-optimal 

group synchronization until the process is enacted again in the next round. 

Consequently, there are no contingencies to account for, nor alternative or 

exceptional process courses. 

The complexity of the IM process is directly reflected in the amount of code that was 

written to implement it. The 6 Java classes defining the process definition junctions 

(i.e., the data and control flow of the process, according to Workflakes Version 1 4.1), 

account for almost 60% of the total lines of Java code written to customize the entire 

KX platform for the IM case study (and still around 50% of all the lines written, in 

case also XML code is counted in). It is therefore not surprising that the amount of 

effort necessary to develop the process specification for the IM case study with 

Workflakes Version 1 was in the order of several work weeks, which reflects the 

complexity of the problem and remains in line with the productivity that can be 

expected from a generic software development task. 

In the AI2TV case study, instead, most of the coding complexity resides not in the 

coordination role, but rather in the helper functions that implement the decision role 

and that the process invokes at each round to figure out if and how each AI2TV client 

needs to be adapted. The code of those helper functions, although admittedly 

involved, is relatively lightweight, since they amount all together to about 200 lines 

of Java code. What is noticeable is that practically no other programming code 
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needed to be written to enable the client synchronization workflow of the AI2TV case 

study, as presented in Section 5.2. The only other effort regarded the modeling of the 

process in Little-JIL from scratch, employing the Visual-JIL editor, which took a 

couple of work days. 

Even by considering the different inherent complexity of the IM and AI2TV 

coordination problems, one order of magnitude looks like a significant difference in 

favor of Workflakes Version 2 and its high-level process modeling capabilities. 

Further data to validate this observation could to be collected with the progressing of 

the AI2TV case study, as the short-term client synchronization workflow is integrated 

and harmonized with the medium- and long-term workflows, in a larger, more 

complex and multi-faceted coordination process. 

There is another factor that hints even more clearly at how hard it can be to define, 

maintain and evolve a dynamic adaptation process, when it is expressed in a rather 

low-level way, such as a conventional programming language. When, at a certain 

stage in the IM experiment, the process was extended to include the orchestration of 

graceful service staging (as described in Section 5.1), it was quite difficult to modify 

the code defining the process for that purpose, while maintaining it correct and 

backwards-compatible with the previous version, which was dealing only with the 

deployment and on-the-fly scalability of the IM service. In the end, it was simpler to 

load the junctions defining the staging process in a separate instance of the 

Workflakes engine, as opposed to run the process as a whole in a single engine: that 

comported a significant deal of unnecessary code duplication, since many of the tasks 
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in the staging process are the same used for orchestrating deployment and scalability, 

although wired together with a different and more complicated logic. 

Using high-level process modeling facilities, it is easier to manage the maintenance 

and evolution of the process specifications and keep under control any growth in 

complexity like the one experienced in the IM case study. With the Little-JIL visual 

language, for example, it is easier to figure out at a glance the possible 

interdependencies of various parts of a process. It is also easier to promote re-use of 

fragments of the process specifications, since the hierarchical structure of Little-JIL 

naturally supports modularization; furthermore, Visual-JIL also enables to exploit that 

modularization by using references: a reference can appear as a legitimate sub-step in 

the expansion of any process step, and constitutes a pointer to some other sub-tree in 

the process hierarchy. 

Interpretation of case study results 

The IM case study was among the first experiments that were carried out with KX in 

its entirety (together with the GeoWorlds experiment – see Section 5.3), and the first 

which demanded a significant level of complexity for the coordination role. As such, 

it was instrumental in verifying the general feasibility as well as the effectiveness of 

an externalized approach to dynamic software adaptation. Therefore, measures and 

observations deriving from the IM case study contribute principally to evaluate the 

issues related to working hypothesis H1. At the same time, the IM case study 

contributes to evaluate also the suitability of a process-based approach to the 

description and enactment of coordination in dynamic software adaptation, which 

relates to working hypothesis H2. 
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It is the AI2TV case study that contributes mainly to the validation of hypothesis H2, 

with respect not simply to the suitability but also the effectiveness of the process-

based approach embraced by Workflakes, as well as of its implementation in the 

Workflakes system itself. 

Considering all of the above, it is possible to draw a synthesis that evaluates the 

presented results against each working hypothesis. As far as working hypothesis H1 

is concerned, such a synthesis is presented in : that Table reports findings 

coming from the IM case study only. 

Figure 27

The Table in Figure 27 conveys a twofold message. First of all, it shows how the 

accomplishments of externalized, process-orchestrated dynamic adaptation applied to 

the IM case study are in line with the kinds of benefits that are typically expected of 

autonomic computing and analogous initiatives. One of the major motivations for 

autonomic computing is to alleviate the exploding complexity of the management and 

administration of today’s software systems; another major claim is that running 

autonomic software can bring about and maintain higher QoS levels. The 

accomplishments summarized by, respectively, the “Mgmt. savings” and “Runtime 

improvements” columns of the Table address precisely those two issues. Therefore, 

they serve as a confirmation of how the approach proposed by this work is a suitable 

means to reach some of the primary goals of autonomic computing. 
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Furthermore, the results reported in the other two columns, “Development impact” 

and “Granularity level”, underline together how embracing an externalized approach 

to dynamic adaptation can be (at least) as effective as internalized approaches. One of 

the potentially critical limitations of externalized dynamic adaptation is that it has 

only limited access to the innards of a legacy target system – especially whenever the 

source code is not available – which could prove insufficient whenever very involved 

and fine-grained adaptations are needed. That is instead by definition not an issue for 

internalized approaches. In the IM case study, it was possible to effect adaptations at 

various – even quite fine – granularity levels without impacting in any way the 

development of the target system. Such a result testifies that, by paying the right 

amount of attention to the design of the platform and the use of appropriate 

technologies for the contact points with the target system, externalized dynamic 

adaptation may be able to overcome that hurdle, and deliver its signature advantage: 

the ability to orchestrate end-to-end dynamic adaptation across the various distributed 

and heterogeneous components of a legacy target system. 

The Table in Figure 28 presents a synthesis of results that pertain to hypothesis H2. In 

the first place, the “Complexity factors” column groups together a selection of issues 

that (without claiming to be exhaustive) represents aspects that are particularly 

relevant and potentially complex for the coordination role of dynamic adaptation. The 

Table shows how the processes defined for the two case studies address together the 

majority of them, with the exception of compensations (hiven the nature of the 

coordination problems, provisions for compensations branches in the processes were 

not necessary in both major case studies). Furthermore, the Table reports, side by side 
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with the complexity assessment just discussed, data about the effort needed to define 

the processes, which highlights the level of improvement and effort savings made 

possible by embracing an abstract modeling formalism. It also reports indications of 

level of run-time support and performance provided by the Workflakes engine in its 

various versions in enacting the processes. 

For a characterization of the range of dynamic adaptation problems that were 

addressed it is instead possible to refer to Figure 23, which shows how the two major 

case studies together cover a variety of issues pertaining to configuration, healing and 

optimization. That, taken together with the diverse goals of the IM and AI2TV case 

studies, which are reported in the Table of , can be considered as evidence 

of the applicability of the process-based approach to a wide spectrum of problems. 

Figure 28

The message conveyed by the Table is threefold. It shows that process-based 

coordination represents a suitable choice for a number of diverse applications of 

dynamic adaptation, even with demanding levels of complexity. It also shows that 

process technology has the potential to provide efficient run-time support even in 

domains that impose significant performance and timing constraints to the dynamic 

adaptation facilities. Finally, it confirms the necessity of a high-level enactable 

formalism to define, handle and manage any non-trivial coordination problem in the 

form of a process. 

6.3 Limitations and open issues 

The previous Section tries to provide an organic view of the accomplishments 

reached by the experimental work towards the working hypotheses inspiring this 

research. For a complete evaluation, it is equally important to assess the inadequacies 
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or shortcomings that have been found, and any issues that still need to be resolved, 

which can motivate future research efforts on this same theme. 

In the first place, it is worthy to recall that there are some limitations of externalized 

dynamic adaptation that restrict its suitability, with respect to certain application 

domains, such as hard real-time, or certain categories of adaptation targets, such as 

operating systems. Those limitations have been already previously discussed within 

this document, for example as part of the principled critique of the approach in 

Section 3.4, or the assessment of the experiments and their coverage in Section 6.1. 

Those limitations seem inherent to the externalized nature of the approach; therefore, 

they can be viewed as known boundaries for its usability. It is possible that further 

investigation and experimentation will help identifying more clearly other such 

boundaries, which may have not been yet highlighted. 

One of the most important outstanding problems at the current stage of understanding 

of processes as orchestration means for dynamic software adaptation, is that each 

single process (or process fragment) is developed ad hoc from start to end for each 

target system condition that triggers a certain adaptation. That is obviously difficult, 

costly and time-consuming. The foundations and techniques for moving from such ad 

hoc crafting to a more systematic engineering of coordination processes for dynamic 

adaptation are not yet well understood at this stage. Such systematization is likely to 

require the ability to capture a great wealth of knowledge about the target system at 

run time, and incorporate it seamlessly into the decision and coordination roles of the 

dynamic adaptation facility. 
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The availability of that knowledge could enable the direct generation of coordination 

patterns and processes in a largely automated way. For such a breakthrough, however, 

a very comprehensive target system model must be available. The development of 

such a model requires a two-pronged approach: a mix of advanced analysis skills and 

tools, coupled with powerful modeling abstractions and formalisms. 

The modeling part of that problem is being addressed, for instance, by advancements 

in Architecture Description Languages, which attempt to extend architectural models 

with features that deal with dynamic aspects. Besides capturing with increasing 

sophistication the behavioral aspects of a system in addition to the structural aspects, 

they start to address other issues that are important to achieve run time support, such 

as maintaining the model consistent with respect to the running system, continuously 

evaluating the system configuration against the model for the diagnosis of anomalous 

behaviors or other conditions, and selecting architecture-level adaptations that 

maintain or bring back the system as a whole to legal configurations, as per the 

architecture definition. Such architecture-based adaptation [53] [62] attempts to root 

the otherwise mainly empirical work of developing dynamic adaptation software in 

the realm of formal design. 

Experimentation with architecture-based adaptation was a focus of the GeoWorlds 

case study described in Section 5.3. One of the lessons learned in that experiment as it 

stands regards the rather large gap that still exists between the amount and kind of 

system knowledge captured and made available by state-of-the-art architectural 

models and the nuances present in the system implementation, or, even more so, in a 

“live” instantiation of the implementation that runs within a certain computing 
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environment. That gap may be due in part due to the fact that, most of the time, 

architectural models are artifacts produced during the design phase of the software 

development process, and as such tend to provide an a priori, top-down perspective 

on the system, which necessarily remains somewhat abstract with respect to 

implementation details, independently from the expressiveness of the description 

formalism and the richness of the model. That means that architectural models by 

themselves might remain incomplete with respect to the amount of knowledge and 

detail necessary to capture and reason about a running system. 

Run-time analysis tools could be employed to bridge the remaining gap. The 

synthesis or enrichment of architectural models a posteriori, from the observation and 

analysis of the running system, such as for instance in Software Surveyor [66] could 

complement architectural modeling by adding a bottom-up perspective on the 

architecture. 

An alternative may be to produce a system model that directly captures the essence of 

the implementation as is, rather than abstracting it up at the architectural level. [81] 

proposes to attach formal behavioral descriptors to code blocks (i.e., modules): it 

argues that the bottom-up perspective provided by a model derived from the 

implementation is intrinsically more faithful, detailed, granular, and hence more 

suitable for the purposes of dynamic adaptation, than a model conceived mainly at 

design time. That method requires that developers pick up the practice of including 

the descriptors in their code, which can be seen as an extension of their duties, 

although somewhat akin to documentation. 
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However construed, a sufficiently complete model would offer a significant degree of 

support to the engineering of processes for the coordination of dynamic software 

adaptation. By being able to understand and reason in the abstract about the various 

possible ways in which a system needs to be adapted on the basis of a model, it may 

be possible to come up at design time with the right set of process fragments, which 

can contribute to the solution of a variety of dynamic adaptation situations for a given 

target system; then, at run time, it may be possible to compose them as needed by the 

situation at hand. Thus, the final layout of the process orchestrating a certain complex 

dynamic adaptation could be decided dynamically.  

A possible extension in that direction of the use of architectural models is described 

below. It assumes capabilities and features for the architectural tool set similar to 

those provided by CMU’s ABLE, which has been already experimented with in the 

context of the GeoWorlds case study. 

First of all, to enable that scenario, some gauges are devoted to diagnosing and 

reporting architecturally significant events to the architectural tool set. Those gauges 

serve the purpose of checking and maintaining consistency between the system 

running on the field and its model, and can be constructed starting from certain 

aspects captured by the model. For example, that includes the compliance with 

constraints placed on the model, which state what are the acceptable working 

conditions for the system. The architectural tool set evaluates gauge events such as 

the violations of one or more of those constraints with respect to the model, and takes 

dynamic adaptation decisions, according to a logic that is completely encapsulated by 

its knowledge and understanding of the model, and can remain opaque to the rest of 
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the platform. Decisions are expressed as transformations, which again predicate on 

the model, and impact the layout and the attributes of the architecture. Those 

architectural transformations, which aim at placing the system in a new configuration 

that respects all constraints, can require one or more operations: each operation is a 

directive which represents a modification of some part of the model. Since that 

modification must also be effected on the implementation of that model, it also 

represents a trigger for a ration process fragment that impacts accordingly the target 

system running on the field. 

As a simple example, a single directive that could be part of an architectural 

transformation and that could be pushed from the architectural to the implementation 

level (that is, from the model-based decision role to the coordination role) could be 

something like: “Move Service X from Host A to Host B”. While that can be seen as 

an atomic architectural transformation operation, it needs to be translated at the 

implementation level in a process fragment made of multiple, fine-grained adaptation 

steps. That adaptation process fragment may involve for example the following steps: 

• deployment and instantiation of a new instance of the component providing 

Service X on Host B;  

• detachment of any communication links between the “old” instance of X on Host 

A and other running components of the target system;  

• re-establishment of corresponding communications with the new instance of X; 

• and, finally, shutdown of the instance of X still running on Host A, but not needed 

anymore. 
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The sequence described above is hypothetical and possibly simplistic; furthermore, it 

does not take in account any internal contingencies that can occur at some stage of the 

adaptation, which should be handled explicitly by appropriate secondary branches of 

the process. 

Recalling that each directive is a single operation in a transformation of the 

architecture, it is evident that – with this approach - the architectural tool set drives 

the instantiation and enactment of as many concatenated process fragments as the 

various operations needed to complete the architectural transformation that is being 

enforced on the architecture. 

Besides facilitating the engineering of adequate processes for dynamic adaptation, an 

approach of that kind may be the key to resolve another shortcoming associated to the 

ad hoc approach to the development of dynamic adaptation processes, that is, pre-

determined (as opposed to open-ended) processes. 

Currently, each trigger that signals a target system condition of interest must be well 

known in advance and unambiguously associated to the adaptation resolving it. 

Similarly the adaptation must be fully planned ahead, including the insertion of 

explicit provisions for the handling of all external and internal contingencies. That 

leads to processes that provide “canned” solutions only to a necessarily limited and 

pre-determined set of target system conditions, rather than to open-ended processes 

that potentially cover also unusual or unexpected criticalities as they occur. 

The definition of open-ended processes is typically more bottom-up, compositional 

and fine-grained than that of a fully planned-ahead process; it would require a rich 

catalog of “elementary” process fragments that enact low-level adaptations, which 
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can be incrementally composed. That, however, comports at least two major 

difficulties. 

One problem is that an open-ended process obtained via the situational composition 

of fine-grained fragments may remain completely implicit and “hidden” to an 

analysis carried out a priori on the process specifications. It could possibly emerge as 

a whole only after it has unfolded from start to end, i.e., from the arrival of some 

initial trigger that fires an initial process fragment and that signifies a certain 

macroscopic target system condition to be dealt with, to the achievement of the 

desired target system state that resolves the above-mentioned condition. In the end, 

the dynamic adaptation process would have evolved through a series of intermediate 

modifications to the state of the target systems, achieved via a series of incremental, 

low-level adaptations. But also an analysis a posteriori may fail to elicit the full-

fledged process as it emerges from the open-ended composition of elementary 

fragments, because of the potentially large number of interacting process fragments 

and the variability of the resulting processes. 

Even if the problem of understanding (and then being able to maintain) a dynamic 

adaptation process designed in a very open-ended fashion is resolved, for example, by 

exploiting means for analysis of the process activity logs such as those proposed in 

[29], another problem remains. It is quite difficult to decide upon the set and mix of 

elementary process fragments that must make it into the process specifications. The 

problem is to come up with the right catalog of fine-grained process fragments, which 

would be largely specific to each and every dynamic adaptation application, which 

should cover a large and possibly indefinite spectrum of situations even within the 
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same application, and whose interactions should ensure the correct response to those 

situations, in terms of dynamic adaptation orchestration.  

Both of the above problems, furthermore, affect not only the design, but also the 

testing and validation of any dynamic adaptation facilities employing open-ended 

process-based coordination. 

It seems that comprehensive modeling and analysis capabilities like the one discussed 

earlier as a support to the engineering of dynamic adaptation processes would also 

help in the solution of both of the above problems: a model could be used to drive and 

validate the selection of process fragments to be placed in the catalog; the 

complementary ability to record and analyze the dynamics of the target system 

against the blueprints provided by the architectural model would ease the task to elicit 

and reason about the open-ended processes implicitly put in place. 

Another open issue in relation with this work is the difficulty to come up with an 

evaluation framework for comparing dynamic adaptation approaches relatively to 

each other. The elaboration of appropriate metrics that can be used to frame such a 

relative evaluation is a theme that has not been investigated much to date, in part 

because of the novelty of the field. But a more fundamental problem comes from the 

quite broad goals and scope of dynamic software adaptation and other analogous 

initiatives. If one looks at the two major case studies reported in this work, the 

differences are already macroscopic. In the IM case study, the major intended 

improvements occurred in the area of service management efforts and costs, and in 

the area of improved service availability; the intended effect of dynamic adaptation in 

the AI2TV case study, instead, is all about enforcing the correct behavior of the 
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system while enhancing its quality. Those goals are expressed in entirely different 

terms. 

Since many disparate areas of interest and investigation like the ones mentioned 

above co-exist in the dynamic adaptation problem space, it is particularly hard to 

come up with a limited and coherent set of application-independent metrics that can 

capture and summarize the validity of general-purpose dynamic adaptation facilities. 

For example, a common claim in the context of autonomic computing is how it can 

greatly reduce system management costs, and thus of the Total Cost of Ownership 

(TCO). Since it can be legitimately argued that system management costs largely 

reflect the effort necessary to handle and keep under control the complexity of the 

managed system, and since the taming of such complexity is the original motivation 

and goal of autonomic computing, TCO reduction might be seen as a valid candidate 

for a generic evaluation metric. However, as exemplified by our AI2TV case study, it 

is easy to find applications of dynamic adaptation whose benefits to the target system 

cannot be measured at all in terms of reduced TCO. 

A possible alternative to trying to constrain within a fixed set of dimensions the 

evaluation of dynamic software adaptation, is to abandon the idea of accomplishing 

relative evaluation independently from the application, which might prove more 

realistic, given the nature and heterogeneity of its problem space. 

A possibility could be the creation of a composite benchmark, including a variety of 

baseline experiments that cover the various areas within the problem space of 

dynamic software adaptation. It might be possible to define and exploit to that end a 

set of target systems in different application domains, choosing from well-known 
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systems, perhaps best-breed open source projects. Different approaches could be then 

compared relatively to each other in terms of how they score with respect to the 

various experiments, and the scores would capture the benefits brought about in each 

experiment in absolute terms, with respect to a set of dimensions and metrics that are 

recognizably relevant for that experiment. 

Another way that could be explored is to tie the evaluation directly to the original 

requirements of the target system, and to the degree of fulfillment of those 

requirements that the adaptive solution is able to guarantee. Such an approach would 

help establishing a strong inter-dependence between the engineering of requirements 

specifications and the engineering of dynamic adaptation facilities (once again, the 

availability of comprehensive modeling capabilities could help, in bridging the two 

areas and in setting, maintaining and reasoning about that correlation). 

Such an approach would also shift the issue of coming up with homogeneous means 

for the evaluation of dynamic adaptation from the solution domain to the problem 

domain. Within the definition of the problem domain of each application, it is feasible 

to denote the importance and the weight that each requirement has for that application 

(for example by exploiting requirements prioritization, traceability relationships, or 

other methods and tools used for analysis and evaluation in the field of requirements 

engineering [169]). Having established that, it may then be possible to assign a 

“value” to the ability by a dynamic adaptation solution to enforce the compliance of 

the application at run time with a given requirement. 

Finally, another significant issue that remains in part open at this stage is that of meta-

adaptation. A dynamic adaptation platform is in itself a complex, distributed software 
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system. While it strives to provide important features to its target system, such as self-

configuration, self-optimization, self-healing and self-protection, it can itself suffer 

from problems and failures that may impact its ability to perform efficiently or event 

correctly. There is a clear need for the dynamic adaptation platform to be able to 

assess and tune itself while it runs, ideally without interrupting its supervision of the 

target system. Dynamic adaptations may apply to various roles and elements in the 

platform; some examples are the instantiation, withdrawal or tuning of sensors and 

gauges, or even the modification and update of decision policies and coordination 

plans.  

To achieve meta-adaptation capabilities, the availability and semantic richness of 

behavioral models – applied this time to the platform itself and its possible operation 

– appears to be once more a crucial issue. 

6.4 Comparison with the state of the art 

The discussion below intends to highlight the differences and the original 

contribution of the research presented in this document with respect to a variety of 

other techniques and works that address the problem space of dynamic software 

adaptation in ways that are closely related to Workflakes. Therefore, this discussion 

concentrates primarily on approaches that show an explicit coordination focus. 

Process-based software coordination 

Once again, it is important to notice that it is its externalized stance that most strongly 

characterizes Workflakes. Often, in fact, automated solutions to software coordination 

and control present structural dependencies with respect to the subjects of their 
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coordination. 

Some of those solutions can be seen as an evolution of built-in fault tolerance code. 

For example, [71] proposes a rule-based inference engine for decision support in 

application-level QoS assurance, which incorporates a coordination entity guiding a 

set of computational actuators. However, the coordinator and actuators must both be 

embedded with each target component. Solutions like that make it more difficult to 

define system-wide adaptations and limit the adaptations that can be carried out 

without rebuilding the target. 

Another classic approach is that of an environment or middleware with native 

dynamic adaptation capabilities. Generic (i.e., not necessarily process-based) 

examples of dynamic adaptation middleware include Conic [3], Polylith [1], 2K / 

dynamicTao [2] and many others.  

Also many works that employ process technology for software control and 

coordination adopt in fact a middleware-like approach, by exerting the coordination 

“from the inside”, that is, on the target’s own computations. For example, [72] 

introduces Containment Units, as modular process-based lexical constructs for 

defining how distributed applications may handle self-repair and self-reconfiguration. 

Containment Units define a hierarchy of processes that predicate on constraints and 

faults, and take action to handle faults within the defined constraints. The enactment 

of Containment Units is under the responsibility of a process engine that is integral to 

the system being adapted, and proceeds by directing changes on the target 

components, which by definition are process-aware. 
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PIE [10] is another example of a process-based middleware, which supports 

federations of components. PIE adds a control layer on top of a range of inter-

component communication facilities. The control layer implements process guidance 

via handlers that react to and manipulate the communications exchanged by the 

components in a federation. Dynamic adaptation is thus limited to the reconfiguration 

of the service architectural connectors and is carried out by plugging in appropriate 

handlers, as directed by the process, which intrude in the normal course of 

computation of the target. 

TCCS [73] has considerable similarities with Workflakes, since it employs its process 

engine to direct the work of analogous effector agents, to carry out the dynamic 

adaptation tasks. However, TCCS is the epitome of the middleware approach, since it 

is in charge of all interactions between the system components, even normal 

operations; that is, the target application simply does not exist independently from its 

process and agent-based framework. 

In each dynamic adaptation middleware mentioned above, all service components 

need to be assembled from the start according to the middleware and its primitives. 

This not only poses a considerable barrier with respect to legacy software, but also 

introduces a very strong dependency between actors and subjects of dynamic 

adaptation. Furthermore, the spectrum and granularity of possible adaptations is 

effectively restricted by the set of primitives made available by the chosen 

middleware. A similar observation applies also to those works that exploit the 

characteristics of established middleware frameworks to facilitate certain aspects of 
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dynamic adaptation, such as BARK [4], which is limited to the EJB component 

model. 

A particularly noteworthy effort is that presented in [180], since it regards the 

dynamic adaptation of distributed applications directly developed with the Cougaar 

infrastructure. That work considers large-scale logistics application running on 

hundreds of collaborating Cougaar instantiations, which are regarded as a community 

of distributed agents. The built-in workflow facilities of Cougaar are leveraged not 

only to puruse the goals of those logistics applications, but also – in combination with 

the resident monitoring facilities of the Cougaar infrastructure - to provide adaptive 

control of the operation of the various Cougaar agents. The goal is to optimize the 

overall performance of the community, trading-off some precision in the evaluation 

and production of the logistics plans for increased throughput, when necessary 

because of heavy computational load and environment conditions. That works thus 

presents the peculiar case of an internalized, workflow-based dynamic adaptation 

facility employed for the control of other workflow-based applications developed on 

the same platform. 

In contrast to all of the internalized approaches above, Workflakes remains 

independent from any underlying computing framework and general with respect to 

the reach, granularity and kinds of dynamic adaptation that it can exert, since the 

target is fully disjoint from the dynamic adaptation engine. 

The most similar process-based approach to the orchestration of dynamic adaptation 

(that we know of) may be Willow [31]. Willow proposes an architecture for the 

survivability of distributed applications, analogous to our vision of a superimposed 
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feedback loop. In particular, Willow can implement reactive as well as proactive 

dynamic adaptation policies, which are driven by codified architectural knowledge, 

and enacted via a process-based mechanism built upon the previous Software Dock 

(re-)deployment engine [36]. It appears, however, that Willow restricts itself to 

coarse-grained reconfigurations, such as replacing, adding and removing entire 

components, perhaps even composite substructures, from the target application, while 

presuming conventional embedded approaches for more local and refined adaptations. 

CHAMPS [183] is another system that employs process technology. It is noticeable 

because it attempts to automatically generate an adaptation workflow on the basis of a 

Request For Change (RFC) coming from an administration entity, which is typically 

operated by humans. To that end, CHAMPS includes a Task Graph Builder, which 

puts together single tasks and small fragments from a catalog, producing a sequence 

of tasks with precedence constraints. The generated concatenation is then consumed 

by the Planner & Scheduler of CHAMPS, which generates a slightly more complex 

workflow, and tries to maximize the degree of parallelism among tasks, taking in 

account precedence relationships, but also other aspects, like costs and Service Level 

Agreements (SLAs), imposed on the target system. The resulting workflow is 

translated into BPEL4WS for its enactment in a BPEL-compliant engine. The 

extension of the generative approach of CHAMPS to cover more sophisticated flow 

constructs is under investigation. 
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Alternatives for the coordination of dynamic adaptation 

Among the various existing software coordination paradigms (see Section 2.3), the 

most common alternative approaches to fulfill the coordination role in dynamic 

adaptation seem to come from the fields of agent-based and rule-based systems. 

Agents have been already discussed in Section 2.3 as a coordination paradigm in 

general, and in Section 2.4 with the purpose of highlighting their inter-relationships 

with process technology. 

There are several examples of agent-based systems that are related to the theme of 

dynamic software adaptation. Some are concerned with the development of agent-

based applications that are adaptive or autonomic in themselves, thus falling into the 

category of internalized dynamic adaptation. For example, [175] focuses on 

embedding within agent-based applications fault recovery features by design. DarX 

[176] focuses on the dynamic replication of those agents in a given community, 

whose capabilities are or become critical during the life span and for the work of the 

community. Anthill [170] implements adaptive behaviors within a large-scale 

community of autonomous agents; Messor [171] is an example of an Anthill 

application that provides load balancing for a Grid of computing elements 

implemented as Anthill agents. 

Other works regard the usage of agent-based techniques to carry out dynamic 

adaptation on external, generic software applications and systems. For example, 

AUTONOMIA [118], employs a coordination model derived from tuple spaces for 

orchestrating mobile agents, which superintend to the self-healing and self-

optimization of a distributed software system. Target system components must be 
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developed in accord with the AUTONOMIA middleware platform, which makes 

them internally and natively autonomic, and exposes handles for monitoring and 

actuation. However, the mobile agents exerting the adaptation, as well as their 

coordination facilities, remain external to the system, even if they operate on top of 

the same middleware. This configures a hybrid approach to the development of a full 

dynamic adaptation loop, which remains unsuitable for legacy target system, but 

promotes to a degree the separation of some autonomic concerns, such as decision 

policies and coordination plans. ABLE [119] by IBM is a component-oriented agent 

platform, in which each agent is composed of multiple AbleBeans (derived from 

standard JavaBeans), and is itself an AbleBean. Some of the AbleBeans may 

implement sensors and effectors to match and exploit any monitoring and actuation 

functionality exposed by a target system component the agent is deployed onto; 

others may provide analysis and control logic on top of the monitoring and actuation 

AbleBeans. A catalog of AbleBean components is provided to that end, which 

encapsulate a rich mix of techniques (such as, neural networks, rule bases, etc.) and a 

range of algorithms for decision-making, collection of monitoring / diagnostic data, 

and execution of effectors. In one typical ABLE architectural layout, agents overlay 

the target system, with one (or more) agent(s) co-located with each single target 

component, and implementing a mini-control loop that takes care of that component 

in isolation. As the complexity of the dynamic adaptation problems grows, other 

layers of agents can be added to provide an increasingly more sophisticated and 

global perspective on analysis, decision and coordination. With respect to 

coordination, ABLE seems to lean towards the implicit model of run-time negotiation 
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among agents, supported by a subsumption architecture inspired by the original work 

of Brooks [172]. 

Another agent-based autonomic platform is proposed in [173], which has two 

distinguishing traits: it is organized by multiple layers of agents with different 

responsibilities, like ABLE, and it has an explicit focus on architecture-level 

adaptations. To that end, it incorporates a full-fledged, dynamic architectural model 

that is exposed to the agents in the higher layer, which are devoted to decision-

making. Intermediate-layer agents are directed from the higher-layer and manage the 

work of lower-layer agents, which implement the points of contact with the target 

system for monitoring and actuation. Interventions by the lower-layer agents are 

limited to the modification of the architectural layout, that is, adding, removing or 

replacing components, or modifying connectors; therefore they remain somewhat 

coarse-grained. Coordination-wise, plans are generated by the decision-making agents 

at the higher layer, and orchestrated by intermediate-layer agents by sending stimuli 

to lower-layer agents, which are completely reactive. It is however not clear what 

kind of coordination paradigm is employed to express and enact those plans. 

A layered approach is also employed by Lira [182], which employs a hierarchical 

community of agents. The agent hierarchy maps to a structural breakdown of the 

target system in applications, hosts, and components within each host. Each agent has 

a local decision-maker, built with Petri Nets [204]. Agents at the lowest layer can 

decide only on local adaptations; agents at higher layers can also direct lower-layer 

agents to effect some adaptations. Adaptations are seen as atomic interventions 

chosen from a limited set, since Lira does not currently support the concept of multi-
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step adaptations; however, the authors envision using a coordination paradigm – also 

based on Petri nets - in future developments. 

There are also several works that use rule-based techniques (previously discussed in 

Section 2.3) for dynamic software adaptation. Rules of various kinds, such as ECA 

rules, have been commonly used to express management policies and support their 

automation to a degree (see for example [177]), even in traditional, human-intensive 

management systems; a rule-based representation of those policies is recommended 

also by the IETF [178]. 

Extending from there, rules can be conveniently used to specify and implement 

autonomic behavior within single components, such as in [71]. They can further be 

used to orchestrate multi-component adaptations. Autopilot [113], for instance, uses 

fuzzy logic rules within a close-control loop facility embedded in a computing Grid, 

for the optimization of the performance of parallel applications running on that Grid. 

The Autopilot system seems to coalesce in the rule base the decision and the 

coordination roles of a dynamic adaptation framework, although it is not clear what 

degree of coordination complexity can be achieved in that way. Similarly, also 

DIOS++ [114] works in the context of computing Grid optimization. The DIOS++ 

distributed rule base defines both the condition to be monitored by the dynamic 

adaptation loop, and the actions to be taken in response to those conditions. Multiple 

rule executors, co-located with the autonomic elements of the Grid to be adapted, 

work in parallel and can influence each other when firing rules. Therefore, DIOS++ 

has the potential to define a full-fledged coordination plan that spans the Grid. Both 

Autopilot and DIOS++ are evaluated with respect to the (reasonably limited) 
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overhead they impose onto the computing infrastructure of their targets, but not with 

respect to the management and/or performance benefits they bring about onto their 

target Grid computing environments or applications. 

RUDDER (see [117]) aims at the construction of a de-centralized rule engine for the 

orchestration of dynamic adaptation policies on generic distributed computing 

applications. Rule processors (dubbed rule agents) work in a peer-to-peer fashion, 

and are distributed according to a layered architecture: the architecture includes some 

master rule agents at the overall application level that control the work of other rule 

agents, which are co-located with and, apparently, embedded into target system 

components. Therefore, RUDDER provides a hybrid solution to the orchestration of 

dynamic adaptation, which is partially externalized and partially internalized. 

RUDDER seems to currently be at an early stage, and various aspects are still not 

well specified, including, noticeably, the exact coordination semantics among peer 

rule agents. 

Eos [179] employs a rule base for deciding upon and carrying out adaptations. The 

rule base contains ECA rules, augmented with additional knowledge that represents 

the behavior implications of those rules. A behavior implication defines in a 

declarative way the impact of firing the corresponding rule, in terms of observable 

characteristics of the target system, for example response time, security, throughput, 

availability, etc. In Eos, the decision on what rules must be fired to respond to a 

certain condition that requires dynamic adaptation is taken following a multi-

dimensional evaluation of the likely impact of the rules’ execution on those 

characteristics. Eos thus focuses primarily on sophisticated decision-making, while 
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coordinated, multi-step adaptations are not explicitly considered. However, the 

decision component can choose to concatenate multiple rules, because they provide a 

path that achieves the desired impact on the target system, while minimizing any 

undesired behavior implications. 
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7 Conclusions and future work 

This work has investigated the use of process / workflow technology for the 

development of coordination facilities that can be used to orchestrate the dynamic 

adaptation of distributed software systems, in particular large-scale systems of 

(legacy) systems. This theme can be framed in the larger context of autonomic 

computing. 

Those coordination facilities are intended to provide a core service and fulfill a 

critical role in an externalized platform, such as Kinesthetics eXtreme - KX, which 

aims at superimposing dynamic adaptation on pre-existing software systems, from the 

outside and without modifying those systems. Such a coordination role is 

instrumental for the transformation of decisions on what adaptations must be pursued 

in sequences of computational actions that actually effect the needed modifications on 

one or more elements taking part in the target system. 

This work proposes a model for processes that are suited for the orchestration of 

dynamic adaptation: processes must reactively respond to triggers; they are 

fragmented and structured as task hierarchies; coordination constructs are maintained 

in inner nodes of the hierarchy, while leaf nodes map to actual units of work to be 

effected on the target system; processes need to incorporate suitable concepts to 

handle exceptions, in order to take care of internal contingencies, and must support 

compensations, in case of internal as well as external contingencies. 

The characteristics listed above have guided the design and development of 

Workflakes, a workflow engine specialized for the fully-automated orchestration of 
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dynamic software adaptation; this work reports on the two iterations of Workflakes 

development completed to this date in accord to that design. 

Workflakes represents one of the first process enactment engines applied to the 

orchestration of dynamic adaptation, whose use and effectiveness has been validated 

in a variety of applications. Workflakes has been experimented with in a number of 

case studies (as part of KX and on its own), including and industrial-grade 

application. The case studies reported here address a range of different application 

domains, with diverse requirements and characteristics. It has been applied to many 

of the major concerns of autonomic computing, including the self-configuration, self-

optimization and self-healing of software. The target systems subject to the 

Workflakes controller can widely vary in a number of respects, such as their 

distribution, the computing layers where adaptation takes place, and their timeliness 

requirements. The range of adaptations supported varies in granularity from 

architecture-level reconfigurations to the tuning of functioning parameters within 

individual software modules. 

Taken together, the presented case studies contribute to validate the underlying 

concepts as well as the design and implementation of Workflakes and KX. 

Quantitative and qualitative results collected in the case studies show significant 

benefits in various areas of importance to autonomic computing, such as management 

and administration savings, improvement of runtime quality aspects and the 

enforcement of expected system behavior. Furthermore, all of those benefits can be 

achieved with minimal or no impact on the development of the target system, as well 
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as with little effort devoted to the development of dynamic adaptation features, that 

must be customized for each application. 

As a conclusion, this research demonstrates the suitability and effectiveness of a 

process-based approach to the orchestration of dynamic adaptation, and – in a larger 

context - the feasibility of exerting externalized dynamic adaptation with platforms 

that choose process technology for their coordination role. 

This work can be pursued further in a number of directions. As for research on the 

process-based coordination of dynamic software adaptation in general, the 

outstanding problems discussed in Section 6.3 may represent a valid agenda, which 

can take advantage of some of the results of this work as a starting point. Among 

those problems, there are methods and techniques for the engineering of open-ended 

dynamic adaptation processes, and the dynamic generation of processes on the basis 

of the situational knowledge of the run state of the system, in order to be able to 

respond also to fully unexpected conditions. Those two problems are intertwined, and 

both seem also strongly related to other two open issues: the ability to capture, 

express and reason about formal knowledge that predicates not only upon the 

structure, but also the dynamics of the target system, including the adaptations that 

are or are not valid under certain conditions; and the selection of the right granularity 

level for the fragmentation of dynamic adaptation processes, to make possible the 

construction of a repertoire of process fragments that can be composed on the fly in 

an open-ended way, and that may cover a wide spectrum of dynamic adaptation needs 

for the target system at hand. 

 



 216

Another open issue regards criteria and techniques for the comparative evaluation of 

dynamic adaptation solutions, in general, as well as with respect to their various main 

roles, including coordination. As the work on autonomic computing approaches and 

systems progresses, and given their wide field of applicability, an agreed-upon set of 

evaluation guidelines and practices, if not a common framework will become 

increasingly necessary. 

Finally, it is necessary to investigate the issue of meta-adaptation, that is, how 

dynamic adaptation facilities can keep themselves in check - while at the same time 

controlling an external target system - in order to preserve as well as optimize their 

functionality and performance.  

With respect to the specific advancement of Workflakes and in the context of the KX 

platform, there are multiple aspects that can be the subjects of future work. One is 

concerned with meta-adaptation: Workflakes controllers can be used to modify on the 

fly the monitoring and diagnostic layers of KX, as well as tuning single sensors or 

gauges. Following up on the ideas sketched in Section 6.3, another future 

development regards a fuller integration and more extensive experimentation of the 

platform with ADL-based behavioral models and the corresponding tools, which has 

the potential to bring about architecture-driven generation of the dynamic adaptation 

processes. Workflakes will also be experimented with in other application domains, 

in order to better understand the usability limits and further evaluate the extent of the 

benefits of the approach and the tool. 
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